Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki s
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(s^{2}-36\right)\frac{\mathrm{d}}{\mathrm{d}s}(3s^{1})-3s^{1}\frac{\mathrm{d}}{\mathrm{d}s}(s^{2}-36)}{\left(s^{2}-36\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(s^{2}-36\right)\times 3s^{1-1}-3s^{1}\times 2s^{2-1}}{\left(s^{2}-36\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(s^{2}-36\right)\times 3s^{0}-3s^{1}\times 2s^{1}}{\left(s^{2}-36\right)^{2}}
Mahia ngā tātaitanga.
\frac{s^{2}\times 3s^{0}-36\times 3s^{0}-3s^{1}\times 2s^{1}}{\left(s^{2}-36\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3s^{2}-36\times 3s^{0}-3\times 2s^{1+1}}{\left(s^{2}-36\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3s^{2}-108s^{0}-6s^{2}}{\left(s^{2}-36\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(3-6\right)s^{2}-108s^{0}}{\left(s^{2}-36\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-3s^{2}-108s^{0}}{\left(s^{2}-36\right)^{2}}
Tango 6 mai i 3.
\frac{3\left(-s^{2}-36s^{0}\right)}{\left(s^{2}-36\right)^{2}}
Tauwehea te 3.
\frac{3\left(-s^{2}-36\right)}{\left(s^{2}-36\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.