Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3^{1}s^{5}t^{1}}{3^{1}s^{5}t^{7}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
3^{1-1}s^{5-5}t^{1-7}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
3^{0}s^{5-5}t^{1-7}
Tango 1 mai i 1.
s^{5-5}t^{1-7}
Mō tētahi tau a mahue te 0, a^{0}=1.
s^{0}t^{1-7}
Tango 5 mai i 5.
t^{1-7}
Mō tētahi tau a mahue te 0, a^{0}=1.
s^{0}t^{-6}
Tango 7 mai i 1.
1t^{-6}
Mō tētahi kupu t mahue te 0, t^{0}=1.
t^{-6}
Mō tētahi kupu t, t\times 1=t me 1t=t.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t^{6}})
Me whakakore tahi te 3ts^{5} i te taurunga me te tauraro.
-\left(t^{6}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{6})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(t^{6}\right)^{-2}\times 6t^{6-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-6t^{5}\left(t^{6}\right)^{-2}
Whakarūnātia.