Whakaoti mō p
p=-\frac{4}{5}=-0.8
Tohaina
Kua tāruatia ki te papatopenga
3\times 3p+5p+2=2\times 2p-6
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6,3.
9p+5p+2=2\times 2p-6
Whakareatia te 3 ki te 3, ka 9.
14p+2=2\times 2p-6
Pahekotia te 9p me 5p, ka 14p.
14p+2=4p-6
Whakareatia te 2 ki te 2, ka 4.
14p+2-4p=-6
Tangohia te 4p mai i ngā taha e rua.
10p+2=-6
Pahekotia te 14p me -4p, ka 10p.
10p=-6-2
Tangohia te 2 mai i ngā taha e rua.
10p=-8
Tangohia te 2 i te -6, ka -8.
p=\frac{-8}{10}
Whakawehea ngā taha e rua ki te 10.
p=-\frac{4}{5}
Whakahekea te hautanga \frac{-8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}