Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3n}{2}\times \frac{n}{6}
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 2 me te 4.
\frac{3nn}{2\times 6}
Me whakarea te \frac{3n}{2} ki te \frac{n}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{nn}{2\times 2}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{n^{2}}{2\times 2}
Whakareatia te n ki te n, ka n^{2}.
\frac{n^{2}}{4}
Whakareatia te 2 ki te 2, ka 4.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3n}{2}\times \frac{n}{6})
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 2 me te 4.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3nn}{2\times 6})
Me whakarea te \frac{3n}{2} ki te \frac{n}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{nn}{2\times 2})
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{2\times 2})
Whakareatia te n ki te n, ka n^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{4})
Whakareatia te 2 ki te 2, ka 4.
2\times \frac{1}{4}n^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{2}n^{2-1}
Whakareatia 2 ki te \frac{1}{4}.
\frac{1}{2}n^{1}
Tango 1 mai i 2.
\frac{1}{2}n
Mō tētahi kupu t, t^{1}=t.