Aromātai
\frac{n^{2}}{4}
Kimi Pārōnaki e ai ki n
\frac{n}{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3n}{2}\times \frac{n}{6}
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 2 me te 4.
\frac{3nn}{2\times 6}
Me whakarea te \frac{3n}{2} ki te \frac{n}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{nn}{2\times 2}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{n^{2}}{2\times 2}
Whakareatia te n ki te n, ka n^{2}.
\frac{n^{2}}{4}
Whakareatia te 2 ki te 2, ka 4.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3n}{2}\times \frac{n}{6})
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 2 me te 4.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3nn}{2\times 6})
Me whakarea te \frac{3n}{2} ki te \frac{n}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{nn}{2\times 2})
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{2\times 2})
Whakareatia te n ki te n, ka n^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{4})
Whakareatia te 2 ki te 2, ka 4.
2\times \frac{1}{4}n^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{2}n^{2-1}
Whakareatia 2 ki te \frac{1}{4}.
\frac{1}{2}n^{1}
Tango 1 mai i 2.
\frac{1}{2}n
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}