Aromātai
\frac{3m}{m+7}
Kimi Pārōnaki e ai ki m
\frac{21}{\left(m+7\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3m\left(m+4\right)}{m^{2}+11m+28}
Whakawehe \frac{3m}{m^{2}+11m+28} ki te \frac{1}{m+4} mā te whakarea \frac{3m}{m^{2}+11m+28} ki te tau huripoki o \frac{1}{m+4}.
\frac{3m\left(m+4\right)}{\left(m+4\right)\left(m+7\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3m}{m+7}
Me whakakore tahi te m+4 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m\left(m+4\right)}{m^{2}+11m+28})
Whakawehe \frac{3m}{m^{2}+11m+28} ki te \frac{1}{m+4} mā te whakarea \frac{3m}{m^{2}+11m+28} ki te tau huripoki o \frac{1}{m+4}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m\left(m+4\right)}{\left(m+4\right)\left(m+7\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{3m\left(m+4\right)}{m^{2}+11m+28}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m}{m+7})
Me whakakore tahi te m+4 i te taurunga me te tauraro.
\frac{\left(m^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}m}(3m^{1})-3m^{1}\frac{\mathrm{d}}{\mathrm{d}m}(m^{1}+7)}{\left(m^{1}+7\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(m^{1}+7\right)\times 3m^{1-1}-3m^{1}m^{1-1}}{\left(m^{1}+7\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(m^{1}+7\right)\times 3m^{0}-3m^{1}m^{0}}{\left(m^{1}+7\right)^{2}}
Mahia ngā tātaitanga.
\frac{m^{1}\times 3m^{0}+7\times 3m^{0}-3m^{1}m^{0}}{\left(m^{1}+7\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3m^{1}+7\times 3m^{0}-3m^{1}}{\left(m^{1}+7\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3m^{1}+21m^{0}-3m^{1}}{\left(m^{1}+7\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(3-3\right)m^{1}+21m^{0}}{\left(m^{1}+7\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{21m^{0}}{\left(m^{1}+7\right)^{2}}
Tango 3 mai i 3.
\frac{21m^{0}}{\left(m+7\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{21\times 1}{\left(m+7\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{21}{\left(m+7\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}