Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3m\left(m+4\right)}{m^{2}+11m+28}
Whakawehe \frac{3m}{m^{2}+11m+28} ki te \frac{1}{m+4} mā te whakarea \frac{3m}{m^{2}+11m+28} ki te tau huripoki o \frac{1}{m+4}.
\frac{3m\left(m+4\right)}{\left(m+4\right)\left(m+7\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3m}{m+7}
Me whakakore tahi te m+4 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m\left(m+4\right)}{m^{2}+11m+28})
Whakawehe \frac{3m}{m^{2}+11m+28} ki te \frac{1}{m+4} mā te whakarea \frac{3m}{m^{2}+11m+28} ki te tau huripoki o \frac{1}{m+4}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m\left(m+4\right)}{\left(m+4\right)\left(m+7\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{3m\left(m+4\right)}{m^{2}+11m+28}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{3m}{m+7})
Me whakakore tahi te m+4 i te taurunga me te tauraro.
\frac{\left(m^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}m}(3m^{1})-3m^{1}\frac{\mathrm{d}}{\mathrm{d}m}(m^{1}+7)}{\left(m^{1}+7\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(m^{1}+7\right)\times 3m^{1-1}-3m^{1}m^{1-1}}{\left(m^{1}+7\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(m^{1}+7\right)\times 3m^{0}-3m^{1}m^{0}}{\left(m^{1}+7\right)^{2}}
Mahia ngā tātaitanga.
\frac{m^{1}\times 3m^{0}+7\times 3m^{0}-3m^{1}m^{0}}{\left(m^{1}+7\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3m^{1}+7\times 3m^{0}-3m^{1}}{\left(m^{1}+7\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3m^{1}+21m^{0}-3m^{1}}{\left(m^{1}+7\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(3-3\right)m^{1}+21m^{0}}{\left(m^{1}+7\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{21m^{0}}{\left(m^{1}+7\right)^{2}}
Tango 3 mai i 3.
\frac{21m^{0}}{\left(m+7\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{21\times 1}{\left(m+7\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{21}{\left(m+7\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.