Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3m}{4\left(m-2n\right)}+\frac{4\times 2n}{4\left(m-2n\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4\left(m-2n\right) me m-2n ko 4\left(m-2n\right). Whakareatia \frac{2n}{m-2n} ki te \frac{4}{4}.
\frac{3m+4\times 2n}{4\left(m-2n\right)}
Tā te mea he rite te tauraro o \frac{3m}{4\left(m-2n\right)} me \frac{4\times 2n}{4\left(m-2n\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3m+8n}{4\left(m-2n\right)}
Mahia ngā whakarea i roto o 3m+4\times 2n.
\frac{3m+8n}{4m-8n}
Whakarohaina te 4\left(m-2n\right).
\frac{3m}{4\left(m-2n\right)}+\frac{4\times 2n}{4\left(m-2n\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4\left(m-2n\right) me m-2n ko 4\left(m-2n\right). Whakareatia \frac{2n}{m-2n} ki te \frac{4}{4}.
\frac{3m+4\times 2n}{4\left(m-2n\right)}
Tā te mea he rite te tauraro o \frac{3m}{4\left(m-2n\right)} me \frac{4\times 2n}{4\left(m-2n\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3m+8n}{4\left(m-2n\right)}
Mahia ngā whakarea i roto o 3m+4\times 2n.
\frac{3m+8n}{4m-8n}
Whakarohaina te 4\left(m-2n\right).