Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3i\times 1+3\left(-1\right)i^{2}}{1+i}
Whakareatia 3i ki te 1-i.
\frac{3i\times 1+3\left(-1\right)\left(-1\right)}{1+i}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{3+3i}{1+i}
Mahia ngā whakarea i roto o 3i\times 1+3\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
\frac{\left(3+3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1-i.
\frac{\left(3+3i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+3i\right)\left(1-i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)i^{2}}{2}
Me whakarea ngā tau matatini 3+3i me 1-i pēnā i te whakarea huarua.
\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{3-3i+3i+3}{2}
Mahia ngā whakarea i roto o 3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right).
\frac{3+3+\left(-3+3\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3-3i+3i+3.
\frac{6}{2}
Mahia ngā tāpiri i roto o 3+3+\left(-3+3\right)i.
3
Whakawehea te 6 ki te 2, kia riro ko 3.
Re(\frac{3i\times 1+3\left(-1\right)i^{2}}{1+i})
Whakareatia 3i ki te 1-i.
Re(\frac{3i\times 1+3\left(-1\right)\left(-1\right)}{1+i})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{3+3i}{1+i})
Mahia ngā whakarea i roto o 3i\times 1+3\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Me whakarea te taurunga me te tauraro o \frac{3+3i}{1+i} ki te haumi hiato o te tauraro, 1-i.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{1^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)i^{2}}{2})
Me whakarea ngā tau matatini 3+3i me 1-i pēnā i te whakarea huarua.
Re(\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{3-3i+3i+3}{2})
Mahia ngā whakarea i roto o 3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right).
Re(\frac{3+3+\left(-3+3\right)i}{2})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3-3i+3i+3.
Re(\frac{6}{2})
Mahia ngā tāpiri i roto o 3+3+\left(-3+3\right)i.
Re(3)
Whakawehea te 6 ki te 2, kia riro ko 3.
3
Ko te wāhi tūturu o 3 ko 3.