Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3b-39}{\left(b-5\right)\left(b-2\right)}-\frac{3}{b-2}
Tauwehea te b^{2}-7b+10.
\frac{3b-39}{\left(b-5\right)\left(b-2\right)}-\frac{3\left(b-5\right)}{\left(b-5\right)\left(b-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(b-5\right)\left(b-2\right) me b-2 ko \left(b-5\right)\left(b-2\right). Whakareatia \frac{3}{b-2} ki te \frac{b-5}{b-5}.
\frac{3b-39-3\left(b-5\right)}{\left(b-5\right)\left(b-2\right)}
Tā te mea he rite te tauraro o \frac{3b-39}{\left(b-5\right)\left(b-2\right)} me \frac{3\left(b-5\right)}{\left(b-5\right)\left(b-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{3b-39-3b+15}{\left(b-5\right)\left(b-2\right)}
Mahia ngā whakarea i roto o 3b-39-3\left(b-5\right).
\frac{-24}{\left(b-5\right)\left(b-2\right)}
Whakakotahitia ngā kupu rite i 3b-39-3b+15.
\frac{-24}{b^{2}-7b+10}
Whakarohaina te \left(b-5\right)\left(b-2\right).
\frac{3b-39}{\left(b-5\right)\left(b-2\right)}-\frac{3}{b-2}
Tauwehea te b^{2}-7b+10.
\frac{3b-39}{\left(b-5\right)\left(b-2\right)}-\frac{3\left(b-5\right)}{\left(b-5\right)\left(b-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(b-5\right)\left(b-2\right) me b-2 ko \left(b-5\right)\left(b-2\right). Whakareatia \frac{3}{b-2} ki te \frac{b-5}{b-5}.
\frac{3b-39-3\left(b-5\right)}{\left(b-5\right)\left(b-2\right)}
Tā te mea he rite te tauraro o \frac{3b-39}{\left(b-5\right)\left(b-2\right)} me \frac{3\left(b-5\right)}{\left(b-5\right)\left(b-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{3b-39-3b+15}{\left(b-5\right)\left(b-2\right)}
Mahia ngā whakarea i roto o 3b-39-3\left(b-5\right).
\frac{-24}{\left(b-5\right)\left(b-2\right)}
Whakakotahitia ngā kupu rite i 3b-39-3b+15.
\frac{-24}{b^{2}-7b+10}
Whakarohaina te \left(b-5\right)\left(b-2\right).