Whakaoti mō x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(3-x\right)=6\left(x+1\right)-3\times 5x
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2,4.
12-4x=6\left(x+1\right)-3\times 5x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3-x.
12-4x=6x+6-3\times 5x
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+1.
12-4x=6x+6-15x
Whakareatia te -3 ki te 5, ka -15.
12-4x=-9x+6
Pahekotia te 6x me -15x, ka -9x.
12-4x+9x=6
Me tāpiri te 9x ki ngā taha e rua.
12+5x=6
Pahekotia te -4x me 9x, ka 5x.
5x=6-12
Tangohia te 12 mai i ngā taha e rua.
5x=-6
Tangohia te 12 i te 6, ka -6.
x=\frac{-6}{5}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{6}{5}
Ka taea te hautanga \frac{-6}{5} te tuhi anō ko -\frac{6}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}