Aromātai
-\frac{7}{25}-\frac{24}{25}i=-0.28-0.96i
Wāhi Tūturu
-\frac{7}{25} = -0.28
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(3-4i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 3-4i.
\frac{\left(3-4i\right)\left(3-4i\right)}{3^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-4i\right)\left(3-4i\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{3\times 3+3\times \left(-4i\right)-4i\times 3-4\left(-4\right)i^{2}}{25}
Me whakarea ngā tau matatini 3-4i me 3-4i pēnā i te whakarea huarua.
\frac{3\times 3+3\times \left(-4i\right)-4i\times 3-4\left(-4\right)\left(-1\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{9-12i-12i-16}{25}
Mahia ngā whakarea i roto o 3\times 3+3\times \left(-4i\right)-4i\times 3-4\left(-4\right)\left(-1\right).
\frac{9-16+\left(-12-12\right)i}{25}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 9-12i-12i-16.
\frac{-7-24i}{25}
Mahia ngā tāpiri i roto o 9-16+\left(-12-12\right)i.
-\frac{7}{25}-\frac{24}{25}i
Whakawehea te -7-24i ki te 25, kia riro ko -\frac{7}{25}-\frac{24}{25}i.
Re(\frac{\left(3-4i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)})
Me whakarea te taurunga me te tauraro o \frac{3-4i}{3+4i} ki te haumi hiato o te tauraro, 3-4i.
Re(\frac{\left(3-4i\right)\left(3-4i\right)}{3^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-4i\right)\left(3-4i\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{3\times 3+3\times \left(-4i\right)-4i\times 3-4\left(-4\right)i^{2}}{25})
Me whakarea ngā tau matatini 3-4i me 3-4i pēnā i te whakarea huarua.
Re(\frac{3\times 3+3\times \left(-4i\right)-4i\times 3-4\left(-4\right)\left(-1\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{9-12i-12i-16}{25})
Mahia ngā whakarea i roto o 3\times 3+3\times \left(-4i\right)-4i\times 3-4\left(-4\right)\left(-1\right).
Re(\frac{9-16+\left(-12-12\right)i}{25})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 9-12i-12i-16.
Re(\frac{-7-24i}{25})
Mahia ngā tāpiri i roto o 9-16+\left(-12-12\right)i.
Re(-\frac{7}{25}-\frac{24}{25}i)
Whakawehea te -7-24i ki te 25, kia riro ko -\frac{7}{25}-\frac{24}{25}i.
-\frac{7}{25}
Ko te wāhi tūturu o -\frac{7}{25}-\frac{24}{25}i ko -\frac{7}{25}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}