Aromātai
-2-3i
Wāhi Tūturu
-2
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(3-2i\right)i}{1i^{2}}
Me whakarea tahi te taurunga me te tauraro ki te wae pohewa i.
\frac{\left(3-2i\right)i}{-1}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{3i-2i^{2}}{-1}
Whakareatia 3-2i ki te i.
\frac{3i-2\left(-1\right)}{-1}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{2+3i}{-1}
Mahia ngā whakarea i roto o 3i-2\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
-2-3i
Whakawehea te 2+3i ki te -1, kia riro ko -2-3i.
Re(\frac{\left(3-2i\right)i}{1i^{2}})
Me whakarea tahi te taurunga me te tauraro o \frac{3-2i}{i} ki te wae pohewa i.
Re(\frac{\left(3-2i\right)i}{-1})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{3i-2i^{2}}{-1})
Whakareatia 3-2i ki te i.
Re(\frac{3i-2\left(-1\right)}{-1})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{2+3i}{-1})
Mahia ngā whakarea i roto o 3i-2\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(-2-3i)
Whakawehea te 2+3i ki te -1, kia riro ko -2-3i.
-2
Ko te wāhi tūturu o -2-3i ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}