Whakaoti mō a
a=-13
Tohaina
Kua tāruatia ki te papatopenga
3-\left(-4\right)=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-10-\left(-3\right)\right)
Tē taea kia ōrite te tāupe a ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -a-2.
3+4=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-10-\left(-3\right)\right)
Ko te tauaro o -4 ko 4.
7=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-10-\left(-3\right)\right)
Tāpirihia te 3 ki te 4, ka 7.
7=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-10+3\right)
Ko te tauaro o -3 ko 3.
7=\left(\frac{1}{11}a+\frac{2}{11}\right)\left(-7\right)
Tāpirihia te -10 ki te 3, ka -7.
7=-\frac{7}{11}a-\frac{14}{11}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{11}a+\frac{2}{11} ki te -7.
-\frac{7}{11}a-\frac{14}{11}=7
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{7}{11}a=7+\frac{14}{11}
Me tāpiri te \frac{14}{11} ki ngā taha e rua.
-\frac{7}{11}a=\frac{91}{11}
Tāpirihia te 7 ki te \frac{14}{11}, ka \frac{91}{11}.
a=\frac{91}{11}\left(-\frac{11}{7}\right)
Me whakarea ngā taha e rua ki te -\frac{11}{7}, te tau utu o -\frac{7}{11}.
a=-13
Whakareatia te \frac{91}{11} ki te -\frac{11}{7}, ka -13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}