Aromātai
-\frac{3a-7}{2-5a}
Whakaroha
-\frac{3a-7}{2-5a}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3\left(a-1\right)}{a-1}-\frac{4}{a-1}}{5-\frac{3}{1-a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{a-1}{a-1}.
\frac{\frac{3\left(a-1\right)-4}{a-1}}{5-\frac{3}{1-a}}
Tā te mea he rite te tauraro o \frac{3\left(a-1\right)}{a-1} me \frac{4}{a-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3a-3-4}{a-1}}{5-\frac{3}{1-a}}
Mahia ngā whakarea i roto o 3\left(a-1\right)-4.
\frac{\frac{3a-7}{a-1}}{5-\frac{3}{1-a}}
Whakakotahitia ngā kupu rite i 3a-3-4.
\frac{\frac{3a-7}{a-1}}{\frac{5\left(1-a\right)}{1-a}-\frac{3}{1-a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{1-a}{1-a}.
\frac{\frac{3a-7}{a-1}}{\frac{5\left(1-a\right)-3}{1-a}}
Tā te mea he rite te tauraro o \frac{5\left(1-a\right)}{1-a} me \frac{3}{1-a}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3a-7}{a-1}}{\frac{5-5a-3}{1-a}}
Mahia ngā whakarea i roto o 5\left(1-a\right)-3.
\frac{\frac{3a-7}{a-1}}{\frac{2-5a}{1-a}}
Whakakotahitia ngā kupu rite i 5-5a-3.
\frac{\left(3a-7\right)\left(1-a\right)}{\left(a-1\right)\left(2-5a\right)}
Whakawehe \frac{3a-7}{a-1} ki te \frac{2-5a}{1-a} mā te whakarea \frac{3a-7}{a-1} ki te tau huripoki o \frac{2-5a}{1-a}.
\frac{-\left(a-1\right)\left(3a-7\right)}{\left(a-1\right)\left(-5a+2\right)}
Unuhia te tohu tōraro i roto o 1-a.
\frac{-\left(3a-7\right)}{-5a+2}
Me whakakore tahi te a-1 i te taurunga me te tauraro.
\frac{-3a-\left(-7\right)}{-5a+2}
Hei kimi i te tauaro o 3a-7, kimihia te tauaro o ia taurangi.
\frac{-3a+7}{-5a+2}
Ko te tauaro o -7 ko 7.
\frac{\frac{3\left(a-1\right)}{a-1}-\frac{4}{a-1}}{5-\frac{3}{1-a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{a-1}{a-1}.
\frac{\frac{3\left(a-1\right)-4}{a-1}}{5-\frac{3}{1-a}}
Tā te mea he rite te tauraro o \frac{3\left(a-1\right)}{a-1} me \frac{4}{a-1}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3a-3-4}{a-1}}{5-\frac{3}{1-a}}
Mahia ngā whakarea i roto o 3\left(a-1\right)-4.
\frac{\frac{3a-7}{a-1}}{5-\frac{3}{1-a}}
Whakakotahitia ngā kupu rite i 3a-3-4.
\frac{\frac{3a-7}{a-1}}{\frac{5\left(1-a\right)}{1-a}-\frac{3}{1-a}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{1-a}{1-a}.
\frac{\frac{3a-7}{a-1}}{\frac{5\left(1-a\right)-3}{1-a}}
Tā te mea he rite te tauraro o \frac{5\left(1-a\right)}{1-a} me \frac{3}{1-a}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{3a-7}{a-1}}{\frac{5-5a-3}{1-a}}
Mahia ngā whakarea i roto o 5\left(1-a\right)-3.
\frac{\frac{3a-7}{a-1}}{\frac{2-5a}{1-a}}
Whakakotahitia ngā kupu rite i 5-5a-3.
\frac{\left(3a-7\right)\left(1-a\right)}{\left(a-1\right)\left(2-5a\right)}
Whakawehe \frac{3a-7}{a-1} ki te \frac{2-5a}{1-a} mā te whakarea \frac{3a-7}{a-1} ki te tau huripoki o \frac{2-5a}{1-a}.
\frac{-\left(a-1\right)\left(3a-7\right)}{\left(a-1\right)\left(-5a+2\right)}
Unuhia te tohu tōraro i roto o 1-a.
\frac{-\left(3a-7\right)}{-5a+2}
Me whakakore tahi te a-1 i te taurunga me te tauraro.
\frac{-3a-\left(-7\right)}{-5a+2}
Hei kimi i te tauaro o 3a-7, kimihia te tauaro o ia taurangi.
\frac{-3a+7}{-5a+2}
Ko te tauaro o -7 ko 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}