Whakaoti mō x
x=-10
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times 3\left(x+5\right)-3\left(x+5\right)=2\left(2x+5\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
9\left(x+5\right)-3\left(x+5\right)=2\left(2x+5\right)
Whakareatia te 3 ki te 3, ka 9.
9x+45-3\left(x+5\right)=2\left(2x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x+5.
9x+45-3x-15=2\left(2x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x+5.
6x+45-15=2\left(2x+5\right)
Pahekotia te 9x me -3x, ka 6x.
6x+30=2\left(2x+5\right)
Tangohia te 15 i te 45, ka 30.
6x+30=4x+10
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x+5.
6x+30-4x=10
Tangohia te 4x mai i ngā taha e rua.
2x+30=10
Pahekotia te 6x me -4x, ka 2x.
2x=10-30
Tangohia te 30 mai i ngā taha e rua.
2x=-20
Tangohia te 30 i te 10, ka -20.
x=\frac{-20}{2}
Whakawehea ngā taha e rua ki te 2.
x=-10
Whakawehea te -20 ki te 2, kia riro ko -10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}