Aromātai
\frac{25x-15}{2}
Whakaroha
\frac{25x-15}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\times \frac{4}{-2}-4}{\frac{4}{3-5x}}
Tangohia te 5 i te 3, ka -2.
\frac{3\left(-2\right)-4}{\frac{4}{3-5x}}
Whakawehea te 4 ki te -2, kia riro ko -2.
\frac{-6-4}{\frac{4}{3-5x}}
Whakareatia te 3 ki te -2, ka -6.
\frac{-10}{\frac{4}{3-5x}}
Tangohia te 4 i te -6, ka -10.
\frac{-10\left(3-5x\right)}{4}
Whakawehe -10 ki te \frac{4}{3-5x} mā te whakarea -10 ki te tau huripoki o \frac{4}{3-5x}.
-\frac{5}{2}\left(3-5x\right)
Whakawehea te -10\left(3-5x\right) ki te 4, kia riro ko -\frac{5}{2}\left(3-5x\right).
-\frac{5}{2}\times 3-\frac{5}{2}\left(-5\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{2} ki te 3-5x.
\frac{-5\times 3}{2}-\frac{5}{2}\left(-5\right)x
Tuhia te -\frac{5}{2}\times 3 hei hautanga kotahi.
\frac{-15}{2}-\frac{5}{2}\left(-5\right)x
Whakareatia te -5 ki te 3, ka -15.
-\frac{15}{2}-\frac{5}{2}\left(-5\right)x
Ka taea te hautanga \frac{-15}{2} te tuhi anō ko -\frac{15}{2} mā te tango i te tohu tōraro.
-\frac{15}{2}+\frac{-5\left(-5\right)}{2}x
Tuhia te -\frac{5}{2}\left(-5\right) hei hautanga kotahi.
-\frac{15}{2}+\frac{25}{2}x
Whakareatia te -5 ki te -5, ka 25.
\frac{3\times \frac{4}{-2}-4}{\frac{4}{3-5x}}
Tangohia te 5 i te 3, ka -2.
\frac{3\left(-2\right)-4}{\frac{4}{3-5x}}
Whakawehea te 4 ki te -2, kia riro ko -2.
\frac{-6-4}{\frac{4}{3-5x}}
Whakareatia te 3 ki te -2, ka -6.
\frac{-10}{\frac{4}{3-5x}}
Tangohia te 4 i te -6, ka -10.
\frac{-10\left(3-5x\right)}{4}
Whakawehe -10 ki te \frac{4}{3-5x} mā te whakarea -10 ki te tau huripoki o \frac{4}{3-5x}.
-\frac{5}{2}\left(3-5x\right)
Whakawehea te -10\left(3-5x\right) ki te 4, kia riro ko -\frac{5}{2}\left(3-5x\right).
-\frac{5}{2}\times 3-\frac{5}{2}\left(-5\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{2} ki te 3-5x.
\frac{-5\times 3}{2}-\frac{5}{2}\left(-5\right)x
Tuhia te -\frac{5}{2}\times 3 hei hautanga kotahi.
\frac{-15}{2}-\frac{5}{2}\left(-5\right)x
Whakareatia te -5 ki te 3, ka -15.
-\frac{15}{2}-\frac{5}{2}\left(-5\right)x
Ka taea te hautanga \frac{-15}{2} te tuhi anō ko -\frac{15}{2} mā te tango i te tohu tōraro.
-\frac{15}{2}+\frac{-5\left(-5\right)}{2}x
Tuhia te -\frac{5}{2}\left(-5\right) hei hautanga kotahi.
-\frac{15}{2}+\frac{25}{2}x
Whakareatia te -5 ki te -5, ka 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}