Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(x+4\right)}{\left(x-6\right)\left(x+4\right)}+\frac{4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-6 me x+4 ko \left(x-6\right)\left(x+4\right). Whakareatia \frac{3}{x-6} ki te \frac{x+4}{x+4}. Whakareatia \frac{4}{x+4} ki te \frac{x-6}{x-6}.
\frac{3\left(x+4\right)+4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)}
Tā te mea he rite te tauraro o \frac{3\left(x+4\right)}{\left(x-6\right)\left(x+4\right)} me \frac{4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3x+12+4x-24}{\left(x-6\right)\left(x+4\right)}
Mahia ngā whakarea i roto o 3\left(x+4\right)+4\left(x-6\right).
\frac{7x-12}{\left(x-6\right)\left(x+4\right)}
Whakakotahitia ngā kupu rite i 3x+12+4x-24.
\frac{7x-12}{x^{2}-2x-24}
Whakarohaina te \left(x-6\right)\left(x+4\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+4\right)}{\left(x-6\right)\left(x+4\right)}+\frac{4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-6 me x+4 ko \left(x-6\right)\left(x+4\right). Whakareatia \frac{3}{x-6} ki te \frac{x+4}{x+4}. Whakareatia \frac{4}{x+4} ki te \frac{x-6}{x-6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+4\right)+4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)})
Tā te mea he rite te tauraro o \frac{3\left(x+4\right)}{\left(x-6\right)\left(x+4\right)} me \frac{4\left(x-6\right)}{\left(x-6\right)\left(x+4\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+12+4x-24}{\left(x-6\right)\left(x+4\right)})
Mahia ngā whakarea i roto o 3\left(x+4\right)+4\left(x-6\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-12}{\left(x-6\right)\left(x+4\right)})
Whakakotahitia ngā kupu rite i 3x+12+4x-24.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-12}{x^{2}+4x-6x-24})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-6 ki ia tau o x+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x-12}{x^{2}-2x-24})
Pahekotia te 4x me -6x, ka -2x.
\frac{\left(x^{2}-2x^{1}-24\right)\frac{\mathrm{d}}{\mathrm{d}x}(7x^{1}-12)-\left(7x^{1}-12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}-24)}{\left(x^{2}-2x^{1}-24\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-2x^{1}-24\right)\times 7x^{1-1}-\left(7x^{1}-12\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-2x^{1}-24\right)\times 7x^{0}-\left(7x^{1}-12\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
Whakarūnātia.
\frac{x^{2}\times 7x^{0}-2x^{1}\times 7x^{0}-24\times 7x^{0}-\left(7x^{1}-12\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
Whakareatia x^{2}-2x^{1}-24 ki te 7x^{0}.
\frac{x^{2}\times 7x^{0}-2x^{1}\times 7x^{0}-24\times 7x^{0}-\left(7x^{1}\times 2x^{1}+7x^{1}\left(-2\right)x^{0}-12\times 2x^{1}-12\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
Whakareatia 7x^{1}-12 ki te 2x^{1}-2x^{0}.
\frac{7x^{2}-2\times 7x^{1}-24\times 7x^{0}-\left(7\times 2x^{1+1}+7\left(-2\right)x^{1}-12\times 2x^{1}-12\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{7x^{2}-14x^{1}-168x^{0}-\left(14x^{2}-14x^{1}-24x^{1}+24x^{0}\right)}{\left(x^{2}-2x^{1}-24\right)^{2}}
Whakarūnātia.
\frac{-7x^{2}+24x^{1}-192x^{0}}{\left(x^{2}-2x^{1}-24\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-7x^{2}+24x-192x^{0}}{\left(x^{2}-2x-24\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-7x^{2}+24x-192}{\left(x^{2}-2x-24\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.