Whakaoti mō x
x = \frac{\sqrt{37} + 9}{2} \approx 7.541381265
x = \frac{9 - \sqrt{37}}{2} \approx 1.458618735
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-2\right)\times 3+x+1=\left(x-3\right)\left(x-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x^{2}-5x+6.
3x-6+x+1=\left(x-3\right)\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 3.
4x-6+1=\left(x-3\right)\left(x-2\right)
Pahekotia te 3x me x, ka 4x.
4x-5=\left(x-3\right)\left(x-2\right)
Tāpirihia te -6 ki te 1, ka -5.
4x-5=x^{2}-5x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te x-2 ka whakakotahi i ngā kupu rite.
4x-5-x^{2}=-5x+6
Tangohia te x^{2} mai i ngā taha e rua.
4x-5-x^{2}+5x=6
Me tāpiri te 5x ki ngā taha e rua.
9x-5-x^{2}=6
Pahekotia te 4x me 5x, ka 9x.
9x-5-x^{2}-6=0
Tangohia te 6 mai i ngā taha e rua.
9x-11-x^{2}=0
Tangohia te 6 i te -5, ka -11.
-x^{2}+9x-11=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 9 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
Pūrua 9.
x=\frac{-9±\sqrt{81+4\left(-11\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-9±\sqrt{81-44}}{2\left(-1\right)}
Whakareatia 4 ki te -11.
x=\frac{-9±\sqrt{37}}{2\left(-1\right)}
Tāpiri 81 ki te -44.
x=\frac{-9±\sqrt{37}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{37}-9}{-2}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{37}}{-2} ina he tāpiri te ±. Tāpiri -9 ki te \sqrt{37}.
x=\frac{9-\sqrt{37}}{2}
Whakawehe -9+\sqrt{37} ki te -2.
x=\frac{-\sqrt{37}-9}{-2}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{37}}{-2} ina he tango te ±. Tango \sqrt{37} mai i -9.
x=\frac{\sqrt{37}+9}{2}
Whakawehe -9-\sqrt{37} ki te -2.
x=\frac{9-\sqrt{37}}{2} x=\frac{\sqrt{37}+9}{2}
Kua oti te whārite te whakatau.
\left(x-2\right)\times 3+x+1=\left(x-3\right)\left(x-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x^{2}-5x+6.
3x-6+x+1=\left(x-3\right)\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 3.
4x-6+1=\left(x-3\right)\left(x-2\right)
Pahekotia te 3x me x, ka 4x.
4x-5=\left(x-3\right)\left(x-2\right)
Tāpirihia te -6 ki te 1, ka -5.
4x-5=x^{2}-5x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te x-2 ka whakakotahi i ngā kupu rite.
4x-5-x^{2}=-5x+6
Tangohia te x^{2} mai i ngā taha e rua.
4x-5-x^{2}+5x=6
Me tāpiri te 5x ki ngā taha e rua.
9x-5-x^{2}=6
Pahekotia te 4x me 5x, ka 9x.
9x-x^{2}=6+5
Me tāpiri te 5 ki ngā taha e rua.
9x-x^{2}=11
Tāpirihia te 6 ki te 5, ka 11.
-x^{2}+9x=11
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+9x}{-1}=\frac{11}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{9}{-1}x=\frac{11}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-9x=\frac{11}{-1}
Whakawehe 9 ki te -1.
x^{2}-9x=-11
Whakawehe 11 ki te -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-11+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-9x+\frac{81}{4}=-11+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-9x+\frac{81}{4}=\frac{37}{4}
Tāpiri -11 ki te \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{37}{4}
Tauwehea x^{2}-9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{2}=\frac{\sqrt{37}}{2} x-\frac{9}{2}=-\frac{\sqrt{37}}{2}
Whakarūnātia.
x=\frac{\sqrt{37}+9}{2} x=\frac{9-\sqrt{37}}{2}
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}