Whakaoti mō x
x=\sqrt{19}\approx 4.358898944
x=-\sqrt{19}\approx -4.358898944
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+3\right)\times 3-\left(x-2\right)\times 2=\left(x-2\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x+3.
3x+9-\left(x-2\right)\times 2=\left(x-2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 3.
3x+9-\left(2x-4\right)=\left(x-2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 2.
3x+9-2x+4=\left(x-2\right)\left(x+3\right)
Hei kimi i te tauaro o 2x-4, kimihia te tauaro o ia taurangi.
x+9+4=\left(x-2\right)\left(x+3\right)
Pahekotia te 3x me -2x, ka x.
x+13=\left(x-2\right)\left(x+3\right)
Tāpirihia te 9 ki te 4, ka 13.
x+13=x^{2}+x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+3 ka whakakotahi i ngā kupu rite.
x+13-x^{2}=x-6
Tangohia te x^{2} mai i ngā taha e rua.
x+13-x^{2}-x=-6
Tangohia te x mai i ngā taha e rua.
13-x^{2}=-6
Pahekotia te x me -x, ka 0.
-x^{2}=-6-13
Tangohia te 13 mai i ngā taha e rua.
-x^{2}=-19
Tangohia te 13 i te -6, ka -19.
x^{2}=\frac{-19}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=19
Ka taea te hautanga \frac{-19}{-1} te whakamāmā ki te 19 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=\sqrt{19} x=-\sqrt{19}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(x+3\right)\times 3-\left(x-2\right)\times 2=\left(x-2\right)\left(x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x+3.
3x+9-\left(x-2\right)\times 2=\left(x-2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 3.
3x+9-\left(2x-4\right)=\left(x-2\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 2.
3x+9-2x+4=\left(x-2\right)\left(x+3\right)
Hei kimi i te tauaro o 2x-4, kimihia te tauaro o ia taurangi.
x+9+4=\left(x-2\right)\left(x+3\right)
Pahekotia te 3x me -2x, ka x.
x+13=\left(x-2\right)\left(x+3\right)
Tāpirihia te 9 ki te 4, ka 13.
x+13=x^{2}+x-6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+3 ka whakakotahi i ngā kupu rite.
x+13-x^{2}=x-6
Tangohia te x^{2} mai i ngā taha e rua.
x+13-x^{2}-x=-6
Tangohia te x mai i ngā taha e rua.
13-x^{2}=-6
Pahekotia te x me -x, ka 0.
13-x^{2}+6=0
Me tāpiri te 6 ki ngā taha e rua.
19-x^{2}=0
Tāpirihia te 13 ki te 6, ka 19.
-x^{2}+19=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 19}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 19 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 19}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\times 19}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{76}}{2\left(-1\right)}
Whakareatia 4 ki te 19.
x=\frac{0±2\sqrt{19}}{2\left(-1\right)}
Tuhia te pūtakerua o te 76.
x=\frac{0±2\sqrt{19}}{-2}
Whakareatia 2 ki te -1.
x=-\sqrt{19}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{19}}{-2} ina he tāpiri te ±.
x=\sqrt{19}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{19}}{-2} ina he tango te ±.
x=-\sqrt{19} x=\sqrt{19}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}