Whakaoti mō x
x=22
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-3\right)\times 3=\left(x-19\right)\times 19
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,19 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-19\right)\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-19,x-3.
3x-9=\left(x-19\right)\times 19
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 3.
3x-9=19x-361
Whakamahia te āhuatanga tohatoha hei whakarea te x-19 ki te 19.
3x-9-19x=-361
Tangohia te 19x mai i ngā taha e rua.
-16x-9=-361
Pahekotia te 3x me -19x, ka -16x.
-16x=-361+9
Me tāpiri te 9 ki ngā taha e rua.
-16x=-352
Tāpirihia te -361 ki te 9, ka -352.
x=\frac{-352}{-16}
Whakawehea ngā taha e rua ki te -16.
x=22
Whakawehea te -352 ki te -16, kia riro ko 22.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}