Whakaoti mō x
x=\frac{\sqrt{6}}{3}\approx 0.816496581
x=-\frac{\sqrt{6}}{3}\approx -0.816496581
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x\times 3=2\times 1\times \frac{4}{2x}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x,x^{2},2x.
6x=2\times 1\times \frac{4}{2x}
Whakareatia te 2 ki te 3, ka 6.
6x=2\times \frac{4}{2x}
Whakareatia te 2 ki te 1, ka 2.
6x=\frac{2\times 4}{2x}
Tuhia te 2\times \frac{4}{2x} hei hautanga kotahi.
6x=\frac{4}{x}
Me whakakore tahi te 2 i te taurunga me te tauraro.
6x-\frac{4}{x}=0
Tangohia te \frac{4}{x} mai i ngā taha e rua.
\frac{6xx}{x}-\frac{4}{x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6x ki te \frac{x}{x}.
\frac{6xx-4}{x}=0
Tā te mea he rite te tauraro o \frac{6xx}{x} me \frac{4}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{6x^{2}-4}{x}=0
Mahia ngā whakarea i roto o 6xx-4.
6x^{2}-4=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
6x^{2}=4
Me tāpiri te 4 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{4}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}=\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{\sqrt{6}}{3} x=-\frac{\sqrt{6}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2x\times 3=2\times 1\times \frac{4}{2x}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x,x^{2},2x.
6x=2\times 1\times \frac{4}{2x}
Whakareatia te 2 ki te 3, ka 6.
6x=2\times \frac{4}{2x}
Whakareatia te 2 ki te 1, ka 2.
6x=\frac{2\times 4}{2x}
Tuhia te 2\times \frac{4}{2x} hei hautanga kotahi.
6x=\frac{4}{x}
Me whakakore tahi te 2 i te taurunga me te tauraro.
6x-\frac{4}{x}=0
Tangohia te \frac{4}{x} mai i ngā taha e rua.
\frac{6xx}{x}-\frac{4}{x}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6x ki te \frac{x}{x}.
\frac{6xx-4}{x}=0
Tā te mea he rite te tauraro o \frac{6xx}{x} me \frac{4}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{6x^{2}-4}{x}=0
Mahia ngā whakarea i roto o 6xx-4.
6x^{2}-4=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-4\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-4\right)}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\left(-4\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{96}}{2\times 6}
Whakareatia -24 ki te -4.
x=\frac{0±4\sqrt{6}}{2\times 6}
Tuhia te pūtakerua o te 96.
x=\frac{0±4\sqrt{6}}{12}
Whakareatia 2 ki te 6.
x=\frac{\sqrt{6}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{6}}{12} ina he tāpiri te ±.
x=-\frac{\sqrt{6}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{6}}{12} ina he tango te ±.
x=\frac{\sqrt{6}}{3} x=-\frac{\sqrt{6}}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}