Whakaoti mō x
x=-1
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+2.
3x+6+x\times 5=2x\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
8x+6=2x\left(x+2\right)
Pahekotia te 3x me x\times 5, ka 8x.
8x+6=2x^{2}+4x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+2.
8x+6-2x^{2}=4x
Tangohia te 2x^{2} mai i ngā taha e rua.
8x+6-2x^{2}-4x=0
Tangohia te 4x mai i ngā taha e rua.
4x+6-2x^{2}=0
Pahekotia te 8x me -4x, ka 4x.
2x+3-x^{2}=0
Whakawehea ngā taha e rua ki te 2.
-x^{2}+2x+3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-3=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=3 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Tuhia anō te -x^{2}+2x+3 hei \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-3\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te -x-1=0.
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+2.
3x+6+x\times 5=2x\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
8x+6=2x\left(x+2\right)
Pahekotia te 3x me x\times 5, ka 8x.
8x+6=2x^{2}+4x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+2.
8x+6-2x^{2}=4x
Tangohia te 2x^{2} mai i ngā taha e rua.
8x+6-2x^{2}-4x=0
Tangohia te 4x mai i ngā taha e rua.
4x+6-2x^{2}=0
Pahekotia te 8x me -4x, ka 4x.
-2x^{2}+4x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 6}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 4 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 6}}{2\left(-2\right)}
Pūrua 4.
x=\frac{-4±\sqrt{16+8\times 6}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-4±\sqrt{16+48}}{2\left(-2\right)}
Whakareatia 8 ki te 6.
x=\frac{-4±\sqrt{64}}{2\left(-2\right)}
Tāpiri 16 ki te 48.
x=\frac{-4±8}{2\left(-2\right)}
Tuhia te pūtakerua o te 64.
x=\frac{-4±8}{-4}
Whakareatia 2 ki te -2.
x=\frac{4}{-4}
Nā, me whakaoti te whārite x=\frac{-4±8}{-4} ina he tāpiri te ±. Tāpiri -4 ki te 8.
x=-1
Whakawehe 4 ki te -4.
x=-\frac{12}{-4}
Nā, me whakaoti te whārite x=\frac{-4±8}{-4} ina he tango te ±. Tango 8 mai i -4.
x=3
Whakawehe -12 ki te -4.
x=-1 x=3
Kua oti te whārite te whakatau.
\left(x+2\right)\times 3+x\times 5=2x\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+2.
3x+6+x\times 5=2x\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
8x+6=2x\left(x+2\right)
Pahekotia te 3x me x\times 5, ka 8x.
8x+6=2x^{2}+4x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+2.
8x+6-2x^{2}=4x
Tangohia te 2x^{2} mai i ngā taha e rua.
8x+6-2x^{2}-4x=0
Tangohia te 4x mai i ngā taha e rua.
4x+6-2x^{2}=0
Pahekotia te 8x me -4x, ka 4x.
4x-2x^{2}=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2x^{2}+4x=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=-\frac{6}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{4}{-2}x=-\frac{6}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-2x=-\frac{6}{-2}
Whakawehe 4 ki te -2.
x^{2}-2x=3
Whakawehe -6 ki te -2.
x^{2}-2x+1=3+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=4
Tāpiri 3 ki te 1.
\left(x-1\right)^{2}=4
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=2 x-1=-2
Whakarūnātia.
x=3 x=-1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}