Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-5\right)\times 3+x\times 3=x\left(3x-12\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-5.
3x-15+x\times 3=x\left(3x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 3.
6x-15=x\left(3x-12\right)
Pahekotia te 3x me x\times 3, ka 6x.
6x-15=3x^{2}-12x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3x-12.
6x-15-3x^{2}=-12x
Tangohia te 3x^{2} mai i ngā taha e rua.
6x-15-3x^{2}+12x=0
Me tāpiri te 12x ki ngā taha e rua.
18x-15-3x^{2}=0
Pahekotia te 6x me 12x, ka 18x.
6x-5-x^{2}=0
Whakawehea ngā taha e rua ki te 3.
-x^{2}+6x-5=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=6 ab=-\left(-5\right)=5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=5 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+5x\right)+\left(x-5\right)
Tuhia anō te -x^{2}+6x-5 hei \left(-x^{2}+5x\right)+\left(x-5\right).
-x\left(x-5\right)+x-5
Whakatauwehea atu -x i te -x^{2}+5x.
\left(x-5\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=1
Hei kimi otinga whārite, me whakaoti te x-5=0 me te -x+1=0.
x=1
Tē taea kia ōrite te tāupe x ki 5.
\left(x-5\right)\times 3+x\times 3=x\left(3x-12\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-5.
3x-15+x\times 3=x\left(3x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 3.
6x-15=x\left(3x-12\right)
Pahekotia te 3x me x\times 3, ka 6x.
6x-15=3x^{2}-12x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3x-12.
6x-15-3x^{2}=-12x
Tangohia te 3x^{2} mai i ngā taha e rua.
6x-15-3x^{2}+12x=0
Me tāpiri te 12x ki ngā taha e rua.
18x-15-3x^{2}=0
Pahekotia te 6x me 12x, ka 18x.
-3x^{2}+18x-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 18 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
Pūrua 18.
x=\frac{-18±\sqrt{324+12\left(-15\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-18±\sqrt{324-180}}{2\left(-3\right)}
Whakareatia 12 ki te -15.
x=\frac{-18±\sqrt{144}}{2\left(-3\right)}
Tāpiri 324 ki te -180.
x=\frac{-18±12}{2\left(-3\right)}
Tuhia te pūtakerua o te 144.
x=\frac{-18±12}{-6}
Whakareatia 2 ki te -3.
x=-\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{-18±12}{-6} ina he tāpiri te ±. Tāpiri -18 ki te 12.
x=1
Whakawehe -6 ki te -6.
x=-\frac{30}{-6}
Nā, me whakaoti te whārite x=\frac{-18±12}{-6} ina he tango te ±. Tango 12 mai i -18.
x=5
Whakawehe -30 ki te -6.
x=1 x=5
Kua oti te whārite te whakatau.
x=1
Tē taea kia ōrite te tāupe x ki 5.
\left(x-5\right)\times 3+x\times 3=x\left(3x-12\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-5.
3x-15+x\times 3=x\left(3x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 3.
6x-15=x\left(3x-12\right)
Pahekotia te 3x me x\times 3, ka 6x.
6x-15=3x^{2}-12x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3x-12.
6x-15-3x^{2}=-12x
Tangohia te 3x^{2} mai i ngā taha e rua.
6x-15-3x^{2}+12x=0
Me tāpiri te 12x ki ngā taha e rua.
18x-15-3x^{2}=0
Pahekotia te 6x me 12x, ka 18x.
18x-3x^{2}=15
Me tāpiri te 15 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-3x^{2}+18x=15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+18x}{-3}=\frac{15}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{18}{-3}x=\frac{15}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-6x=\frac{15}{-3}
Whakawehe 18 ki te -3.
x^{2}-6x=-5
Whakawehe 15 ki te -3.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-5+9
Pūrua -3.
x^{2}-6x+9=4
Tāpiri -5 ki te 9.
\left(x-3\right)^{2}=4
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=2 x-3=-2
Whakarūnātia.
x=5 x=1
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=1
Tē taea kia ōrite te tāupe x ki 5.