Whakaoti mō x
x=\sqrt{5}\approx 2.236067977
x=-\sqrt{5}\approx -2.236067977
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\times 3-\left(3x^{2}-3\right)=1+x^{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{4}-1,2x^{2}+2,6-6x^{2}.
18-\left(3x^{2}-3\right)=1+x^{2}
Whakareatia te 6 ki te 3, ka 18.
18-3x^{2}+3=1+x^{2}
Hei kimi i te tauaro o 3x^{2}-3, kimihia te tauaro o ia taurangi.
21-3x^{2}=1+x^{2}
Tāpirihia te 18 ki te 3, ka 21.
21-3x^{2}-x^{2}=1
Tangohia te x^{2} mai i ngā taha e rua.
21-4x^{2}=1
Pahekotia te -3x^{2} me -x^{2}, ka -4x^{2}.
-4x^{2}=1-21
Tangohia te 21 mai i ngā taha e rua.
-4x^{2}=-20
Tangohia te 21 i te 1, ka -20.
x^{2}=\frac{-20}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}=5
Whakawehea te -20 ki te -4, kia riro ko 5.
x=\sqrt{5} x=-\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6\times 3-\left(3x^{2}-3\right)=1+x^{2}
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{4}-1,2x^{2}+2,6-6x^{2}.
18-\left(3x^{2}-3\right)=1+x^{2}
Whakareatia te 6 ki te 3, ka 18.
18-3x^{2}+3=1+x^{2}
Hei kimi i te tauaro o 3x^{2}-3, kimihia te tauaro o ia taurangi.
21-3x^{2}=1+x^{2}
Tāpirihia te 18 ki te 3, ka 21.
21-3x^{2}-1=x^{2}
Tangohia te 1 mai i ngā taha e rua.
20-3x^{2}=x^{2}
Tangohia te 1 i te 21, ka 20.
20-3x^{2}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
20-4x^{2}=0
Pahekotia te -3x^{2} me -x^{2}, ka -4x^{2}.
-4x^{2}+20=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 20}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 0 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4\right)\times 20}}{2\left(-4\right)}
Pūrua 0.
x=\frac{0±\sqrt{16\times 20}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{0±\sqrt{320}}{2\left(-4\right)}
Whakareatia 16 ki te 20.
x=\frac{0±8\sqrt{5}}{2\left(-4\right)}
Tuhia te pūtakerua o te 320.
x=\frac{0±8\sqrt{5}}{-8}
Whakareatia 2 ki te -4.
x=-\sqrt{5}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{5}}{-8} ina he tāpiri te ±.
x=\sqrt{5}
Nā, me whakaoti te whārite x=\frac{0±8\sqrt{5}}{-8} ina he tango te ±.
x=-\sqrt{5} x=\sqrt{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}