Whakaoti mō x
x=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-3\right)\times 3+\left(x-3\right)^{2}=x\times 2x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-3\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-3x,x,x^{2}-6x+9.
3x-9+\left(x-3\right)^{2}=x\times 2x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 3.
3x-9+x^{2}-6x+9=x\times 2x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
-3x-9+x^{2}+9=x\times 2x
Pahekotia te 3x me -6x, ka -3x.
-3x+x^{2}=x\times 2x
Tāpirihia te -9 ki te 9, ka 0.
-3x+x^{2}=x^{2}\times 2
Whakareatia te x ki te x, ka x^{2}.
-3x+x^{2}-x^{2}\times 2=0
Tangohia te x^{2}\times 2 mai i ngā taha e rua.
-3x-x^{2}=0
Pahekotia te x^{2} me -x^{2}\times 2, ka -x^{2}.
x\left(-3-x\right)=0
Tauwehea te x.
x=0 x=-3
Hei kimi otinga whārite, me whakaoti te x=0 me te -3-x=0.
x=-3
Tē taea kia ōrite te tāupe x ki 0.
\left(x-3\right)\times 3+\left(x-3\right)^{2}=x\times 2x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-3\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-3x,x,x^{2}-6x+9.
3x-9+\left(x-3\right)^{2}=x\times 2x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 3.
3x-9+x^{2}-6x+9=x\times 2x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
-3x-9+x^{2}+9=x\times 2x
Pahekotia te 3x me -6x, ka -3x.
-3x+x^{2}=x\times 2x
Tāpirihia te -9 ki te 9, ka 0.
-3x+x^{2}=x^{2}\times 2
Whakareatia te x ki te x, ka x^{2}.
-3x+x^{2}-x^{2}\times 2=0
Tangohia te x^{2}\times 2 mai i ngā taha e rua.
-3x-x^{2}=0
Pahekotia te x^{2} me -x^{2}\times 2, ka -x^{2}.
-x^{2}-3x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±3}{2\left(-1\right)}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
x=\frac{3±3}{2\left(-1\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±3}{-2}
Whakareatia 2 ki te -1.
x=\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{3±3}{-2} ina he tāpiri te ±. Tāpiri 3 ki te 3.
x=-3
Whakawehe 6 ki te -2.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{3±3}{-2} ina he tango te ±. Tango 3 mai i 3.
x=0
Whakawehe 0 ki te -2.
x=-3 x=0
Kua oti te whārite te whakatau.
x=-3
Tē taea kia ōrite te tāupe x ki 0.
\left(x-3\right)\times 3+\left(x-3\right)^{2}=x\times 2x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-3\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-3x,x,x^{2}-6x+9.
3x-9+\left(x-3\right)^{2}=x\times 2x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 3.
3x-9+x^{2}-6x+9=x\times 2x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
-3x-9+x^{2}+9=x\times 2x
Pahekotia te 3x me -6x, ka -3x.
-3x+x^{2}=x\times 2x
Tāpirihia te -9 ki te 9, ka 0.
-3x+x^{2}=x^{2}\times 2
Whakareatia te x ki te x, ka x^{2}.
-3x+x^{2}-x^{2}\times 2=0
Tangohia te x^{2}\times 2 mai i ngā taha e rua.
-3x-x^{2}=0
Pahekotia te x^{2} me -x^{2}\times 2, ka -x^{2}.
-x^{2}-3x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-3x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+3x=\frac{0}{-1}
Whakawehe -3 ki te -1.
x^{2}+3x=0
Whakawehe 0 ki te -1.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{3}{2} x+\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
x=0 x=-3
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
x=-3
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}