Whakaoti mō x
x=\frac{3}{4}=0.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
7\times 3+7\left(x+1\right)\times \frac{2}{7}=14\left(x+1\right)
Tē taea kia ōrite te tāupe x ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,7.
21+7\left(x+1\right)\times \frac{2}{7}=14\left(x+1\right)
Whakareatia te 7 ki te 3, ka 21.
21+2\left(x+1\right)=14\left(x+1\right)
Whakareatia te 7 ki te \frac{2}{7}, ka 2.
21+2x+2=14\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
23+2x=14\left(x+1\right)
Tāpirihia te 21 ki te 2, ka 23.
23+2x=14x+14
Whakamahia te āhuatanga tohatoha hei whakarea te 14 ki te x+1.
23+2x-14x=14
Tangohia te 14x mai i ngā taha e rua.
23-12x=14
Pahekotia te 2x me -14x, ka -12x.
-12x=14-23
Tangohia te 23 mai i ngā taha e rua.
-12x=-9
Tangohia te 23 i te 14, ka -9.
x=\frac{-9}{-12}
Whakawehea ngā taha e rua ki te -12.
x=\frac{3}{4}
Whakahekea te hautanga \frac{-9}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}