Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{r-2}-\frac{2}{3}
Me whakakore tahi te r i te taurunga me te tauraro.
\frac{3\times 3}{3\left(r-2\right)}-\frac{2\left(r-2\right)}{3\left(r-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o r-2 me 3 ko 3\left(r-2\right). Whakareatia \frac{3}{r-2} ki te \frac{3}{3}. Whakareatia \frac{2}{3} ki te \frac{r-2}{r-2}.
\frac{3\times 3-2\left(r-2\right)}{3\left(r-2\right)}
Tā te mea he rite te tauraro o \frac{3\times 3}{3\left(r-2\right)} me \frac{2\left(r-2\right)}{3\left(r-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{9-2r+4}{3\left(r-2\right)}
Mahia ngā whakarea i roto o 3\times 3-2\left(r-2\right).
\frac{13-2r}{3\left(r-2\right)}
Whakakotahitia ngā kupu rite i 9-2r+4.
\frac{13-2r}{3r-6}
Whakarohaina te 3\left(r-2\right).