Whakaoti mō r
r=10
Tohaina
Kua tāruatia ki te papatopenga
\left(r-4\right)\times 3=\left(r-1\right)\times 2
Tē taea kia ōrite te tāupe r ki tētahi o ngā uara 1,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(r-4\right)\left(r-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o r-1,r-4.
3r-12=\left(r-1\right)\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te r-4 ki te 3.
3r-12=2r-2
Whakamahia te āhuatanga tohatoha hei whakarea te r-1 ki te 2.
3r-12-2r=-2
Tangohia te 2r mai i ngā taha e rua.
r-12=-2
Pahekotia te 3r me -2r, ka r.
r=-2+12
Me tāpiri te 12 ki ngā taha e rua.
r=10
Tāpirihia te -2 ki te 12, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}