Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3-\left(p-1\right)=3pp
Tē taea kia ōrite te tāupe p ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te p.
3-\left(p-1\right)=3p^{2}
Whakareatia te p ki te p, ka p^{2}.
3-p-\left(-1\right)=3p^{2}
Hei kimi i te tauaro o p-1, kimihia te tauaro o ia taurangi.
3-p+1=3p^{2}
Ko te tauaro o -1 ko 1.
4-p=3p^{2}
Tāpirihia te 3 ki te 1, ka 4.
4-p-3p^{2}=0
Tangohia te 3p^{2} mai i ngā taha e rua.
-3p^{2}-p+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=-3\times 4=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3p^{2}+ap+bp+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=3 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(-3p^{2}+3p\right)+\left(-4p+4\right)
Tuhia anō te -3p^{2}-p+4 hei \left(-3p^{2}+3p\right)+\left(-4p+4\right).
3p\left(-p+1\right)+4\left(-p+1\right)
Tauwehea te 3p i te tuatahi me te 4 i te rōpū tuarua.
\left(-p+1\right)\left(3p+4\right)
Whakatauwehea atu te kīanga pātahi -p+1 mā te whakamahi i te āhuatanga tātai tohatoha.
p=1 p=-\frac{4}{3}
Hei kimi otinga whārite, me whakaoti te -p+1=0 me te 3p+4=0.
3-\left(p-1\right)=3pp
Tē taea kia ōrite te tāupe p ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te p.
3-\left(p-1\right)=3p^{2}
Whakareatia te p ki te p, ka p^{2}.
3-p-\left(-1\right)=3p^{2}
Hei kimi i te tauaro o p-1, kimihia te tauaro o ia taurangi.
3-p+1=3p^{2}
Ko te tauaro o -1 ko 1.
4-p=3p^{2}
Tāpirihia te 3 ki te 1, ka 4.
4-p-3p^{2}=0
Tangohia te 3p^{2} mai i ngā taha e rua.
-3p^{2}-p+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\times 4}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -1 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-1\right)±\sqrt{1+12\times 4}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
p=\frac{-\left(-1\right)±\sqrt{1+48}}{2\left(-3\right)}
Whakareatia 12 ki te 4.
p=\frac{-\left(-1\right)±\sqrt{49}}{2\left(-3\right)}
Tāpiri 1 ki te 48.
p=\frac{-\left(-1\right)±7}{2\left(-3\right)}
Tuhia te pūtakerua o te 49.
p=\frac{1±7}{2\left(-3\right)}
Ko te tauaro o -1 ko 1.
p=\frac{1±7}{-6}
Whakareatia 2 ki te -3.
p=\frac{8}{-6}
Nā, me whakaoti te whārite p=\frac{1±7}{-6} ina he tāpiri te ±. Tāpiri 1 ki te 7.
p=-\frac{4}{3}
Whakahekea te hautanga \frac{8}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
p=-\frac{6}{-6}
Nā, me whakaoti te whārite p=\frac{1±7}{-6} ina he tango te ±. Tango 7 mai i 1.
p=1
Whakawehe -6 ki te -6.
p=-\frac{4}{3} p=1
Kua oti te whārite te whakatau.
3-\left(p-1\right)=3pp
Tē taea kia ōrite te tāupe p ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te p.
3-\left(p-1\right)=3p^{2}
Whakareatia te p ki te p, ka p^{2}.
3-p-\left(-1\right)=3p^{2}
Hei kimi i te tauaro o p-1, kimihia te tauaro o ia taurangi.
3-p+1=3p^{2}
Ko te tauaro o -1 ko 1.
4-p=3p^{2}
Tāpirihia te 3 ki te 1, ka 4.
4-p-3p^{2}=0
Tangohia te 3p^{2} mai i ngā taha e rua.
-p-3p^{2}=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-3p^{2}-p=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3p^{2}-p}{-3}=-\frac{4}{-3}
Whakawehea ngā taha e rua ki te -3.
p^{2}+\left(-\frac{1}{-3}\right)p=-\frac{4}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
p^{2}+\frac{1}{3}p=-\frac{4}{-3}
Whakawehe -1 ki te -3.
p^{2}+\frac{1}{3}p=\frac{4}{3}
Whakawehe -4 ki te -3.
p^{2}+\frac{1}{3}p+\left(\frac{1}{6}\right)^{2}=\frac{4}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}+\frac{1}{3}p+\frac{1}{36}=\frac{4}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}+\frac{1}{3}p+\frac{1}{36}=\frac{49}{36}
Tāpiri \frac{4}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(p+\frac{1}{6}\right)^{2}=\frac{49}{36}
Tauwehea p^{2}+\frac{1}{3}p+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p+\frac{1}{6}=\frac{7}{6} p+\frac{1}{6}=-\frac{7}{6}
Whakarūnātia.
p=1 p=-\frac{4}{3}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.