Aromātai
-\frac{2m^{2}-14m-3}{\left(7-m\right)^{2}}
Kimi Pārōnaki e ai ki m
\frac{2\left(52-7m\right)}{\left(7-m\right)\left(m-7\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{\left(m-7\right)^{2}}+\frac{2m}{7-m}
Tauwehea te m^{2}-14m+49.
\frac{3}{\left(m-7\right)^{2}}+\frac{2m\left(-1\right)\left(m-7\right)}{\left(m-7\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(m-7\right)^{2} me 7-m ko \left(m-7\right)^{2}. Whakareatia \frac{2m}{7-m} ki te \frac{-\left(m-7\right)}{-\left(m-7\right)}.
\frac{3+2m\left(-1\right)\left(m-7\right)}{\left(m-7\right)^{2}}
Tā te mea he rite te tauraro o \frac{3}{\left(m-7\right)^{2}} me \frac{2m\left(-1\right)\left(m-7\right)}{\left(m-7\right)^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3-2m^{2}+14m}{\left(m-7\right)^{2}}
Mahia ngā whakarea i roto o 3+2m\left(-1\right)\left(m-7\right).
\frac{3-2m^{2}+14m}{m^{2}-14m+49}
Whakarohaina te \left(m-7\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}