Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)}+\frac{2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-4 me a+3 ko \left(a-4\right)\left(a+3\right). Whakareatia \frac{3}{a-4} ki te \frac{a+3}{a+3}. Whakareatia \frac{2}{a+3} ki te \frac{a-4}{a-4}.
\frac{3\left(a+3\right)+2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Tā te mea he rite te tauraro o \frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)} me \frac{2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3a+9+2a-8}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Mahia ngā whakarea i roto o 3\left(a+3\right)+2\left(a-4\right).
\frac{5a+1}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Whakakotahitia ngā kupu rite i 3a+9+2a-8.
\frac{5a+1}{\left(a-4\right)\left(a+3\right)}-\frac{21}{\left(a-4\right)\left(a+3\right)}
Tauwehea te a^{2}-a-12.
\frac{5a+1-21}{\left(a-4\right)\left(a+3\right)}
Tā te mea he rite te tauraro o \frac{5a+1}{\left(a-4\right)\left(a+3\right)} me \frac{21}{\left(a-4\right)\left(a+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{5a-20}{\left(a-4\right)\left(a+3\right)}
Whakakotahitia ngā kupu rite i 5a+1-21.
\frac{5\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{5a-20}{\left(a-4\right)\left(a+3\right)}.
\frac{5}{a+3}
Me whakakore tahi te a-4 i te taurunga me te tauraro.