Aromātai
\frac{5}{a+3}
Kimi Pārōnaki e ai ki a
-\frac{5}{\left(a+3\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)}+\frac{2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-4 me a+3 ko \left(a-4\right)\left(a+3\right). Whakareatia \frac{3}{a-4} ki te \frac{a+3}{a+3}. Whakareatia \frac{2}{a+3} ki te \frac{a-4}{a-4}.
\frac{3\left(a+3\right)+2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Tā te mea he rite te tauraro o \frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)} me \frac{2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3a+9+2a-8}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Mahia ngā whakarea i roto o 3\left(a+3\right)+2\left(a-4\right).
\frac{5a+1}{\left(a-4\right)\left(a+3\right)}-\frac{21}{a^{2}-a-12}
Whakakotahitia ngā kupu rite i 3a+9+2a-8.
\frac{5a+1}{\left(a-4\right)\left(a+3\right)}-\frac{21}{\left(a-4\right)\left(a+3\right)}
Tauwehea te a^{2}-a-12.
\frac{5a+1-21}{\left(a-4\right)\left(a+3\right)}
Tā te mea he rite te tauraro o \frac{5a+1}{\left(a-4\right)\left(a+3\right)} me \frac{21}{\left(a-4\right)\left(a+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{5a-20}{\left(a-4\right)\left(a+3\right)}
Whakakotahitia ngā kupu rite i 5a+1-21.
\frac{5\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{5a-20}{\left(a-4\right)\left(a+3\right)}.
\frac{5}{a+3}
Me whakakore tahi te a-4 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}