Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{2\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{1}{a^{2}-b^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+b me a-b ko \left(a+b\right)\left(a-b\right). Whakareatia \frac{3}{a+b} ki te \frac{a-b}{a-b}. Whakareatia \frac{2}{a-b} ki te \frac{a+b}{a+b}.
\frac{3\left(a-b\right)+2\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}-\frac{1}{a^{2}-b^{2}}
Tā te mea he rite te tauraro o \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} me \frac{2\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3a-3b+2a+2b}{\left(a+b\right)\left(a-b\right)}-\frac{1}{a^{2}-b^{2}}
Mahia ngā whakarea i roto o 3\left(a-b\right)+2\left(a+b\right).
\frac{5a-b}{\left(a+b\right)\left(a-b\right)}-\frac{1}{a^{2}-b^{2}}
Whakakotahitia ngā kupu rite i 3a-3b+2a+2b.
\frac{5a-b}{\left(a+b\right)\left(a-b\right)}-\frac{1}{\left(a+b\right)\left(a-b\right)}
Tauwehea te a^{2}-b^{2}.
\frac{5a-b-1}{\left(a+b\right)\left(a-b\right)}
Tā te mea he rite te tauraro o \frac{5a-b}{\left(a+b\right)\left(a-b\right)} me \frac{1}{\left(a+b\right)\left(a-b\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{5a-b-1}{a^{2}-b^{2}}
Whakarohaina te \left(a+b\right)\left(a-b\right).