Whakaoti mō A
A=\frac{8\left(3B+D\right)}{BD}
D\neq -3B\text{ and }D\neq 0\text{ and }B\neq 0
Whakaoti mō B
B=-\frac{8D}{24-AD}
D\neq 0\text{ and }A\neq 0\text{ and }A\neq \frac{24}{D}
Tohaina
Kua tāruatia ki te papatopenga
8B\times 3+8D=ABD
Tē taea kia ōrite te tāupe A ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 8ABD, arā, te tauraro pātahi he tino iti rawa te kitea o AD,AB,8.
24B+8D=ABD
Whakareatia te 8 ki te 3, ka 24.
ABD=24B+8D
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
BDA=24B+8D
He hanga arowhānui tō te whārite.
\frac{BDA}{BD}=\frac{24B+8D}{BD}
Whakawehea ngā taha e rua ki te BD.
A=\frac{24B+8D}{BD}
Mā te whakawehe ki te BD ka wetekia te whakareanga ki te BD.
A=\frac{8}{B}+\frac{24}{D}
Whakawehe 24B+8D ki te BD.
A=\frac{8}{B}+\frac{24}{D}\text{, }A\neq 0
Tē taea kia ōrite te tāupe A ki 0.
8B\times 3+8D=ABD
Tē taea kia ōrite te tāupe B ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 8ABD, arā, te tauraro pātahi he tino iti rawa te kitea o AD,AB,8.
24B+8D=ABD
Whakareatia te 8 ki te 3, ka 24.
24B+8D-ABD=0
Tangohia te ABD mai i ngā taha e rua.
24B-ABD=-8D
Tangohia te 8D mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(24-AD\right)B=-8D
Pahekotia ngā kīanga tau katoa e whai ana i te B.
\frac{\left(24-AD\right)B}{24-AD}=-\frac{8D}{24-AD}
Whakawehea ngā taha e rua ki te 24-AD.
B=-\frac{8D}{24-AD}
Mā te whakawehe ki te 24-AD ka wetekia te whakareanga ki te 24-AD.
B=-\frac{8D}{24-AD}\text{, }B\neq 0
Tē taea kia ōrite te tāupe B ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}