Whakaoti mō x
x=40
Graph
Tohaina
Kua tāruatia ki te papatopenga
15x+28x-280=16x+20x
Me whakarea ngā taha e rua o te whārite ki te 40, arā, te tauraro pātahi he tino iti rawa te kitea o 8,10,5,2.
43x-280=16x+20x
Pahekotia te 15x me 28x, ka 43x.
43x-280=36x
Pahekotia te 16x me 20x, ka 36x.
43x-280-36x=0
Tangohia te 36x mai i ngā taha e rua.
7x-280=0
Pahekotia te 43x me -36x, ka 7x.
7x=280
Me tāpiri te 280 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{280}{7}
Whakawehea ngā taha e rua ki te 7.
x=40
Whakawehea te 280 ki te 7, kia riro ko 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}