Whakaoti mō a
a=10
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{8}a=-\frac{1}{4}+4
Me tāpiri te 4 ki ngā taha e rua.
\frac{3}{8}a=-\frac{1}{4}+\frac{16}{4}
Me tahuri te 4 ki te hautau \frac{16}{4}.
\frac{3}{8}a=\frac{-1+16}{4}
Tā te mea he rite te tauraro o -\frac{1}{4} me \frac{16}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{8}a=\frac{15}{4}
Tāpirihia te -1 ki te 16, ka 15.
a=\frac{15}{4}\times \frac{8}{3}
Me whakarea ngā taha e rua ki te \frac{8}{3}, te tau utu o \frac{3}{8}.
a=\frac{15\times 8}{4\times 3}
Me whakarea te \frac{15}{4} ki te \frac{8}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
a=\frac{120}{12}
Mahia ngā whakarea i roto i te hautanga \frac{15\times 8}{4\times 3}.
a=10
Whakawehea te 120 ki te 12, kia riro ko 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}