Whakaoti mō a
a\geq \frac{1}{6}
Tohaina
Kua tāruatia ki te papatopenga
3-2\left(a+3\right)\leq 4\left(a-1\right)
Me whakarea ngā taha e rua o te whārite ki te 8, arā, te tauraro pātahi he tino iti rawa te kitea o 8,4,2. I te mea he tōrunga te 8, kāore e huri te ahunga koreōrite.
3-2a-6\leq 4\left(a-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te a+3.
-3-2a\leq 4\left(a-1\right)
Tangohia te 6 i te 3, ka -3.
-3-2a\leq 4a-4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te a-1.
-3-2a-4a\leq -4
Tangohia te 4a mai i ngā taha e rua.
-3-6a\leq -4
Pahekotia te -2a me -4a, ka -6a.
-6a\leq -4+3
Me tāpiri te 3 ki ngā taha e rua.
-6a\leq -1
Tāpirihia te -4 ki te 3, ka -1.
a\geq \frac{-1}{-6}
Whakawehea ngā taha e rua ki te -6. I te mea he tōraro a -6, ka huri te ahunga koreōrite.
a\geq \frac{1}{6}
Ka taea te hautanga \frac{-1}{-6} te whakamāmā ki te \frac{1}{6} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}