Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 3 } { 8 } ( 4 - 2 ) + \frac { 3 } { 16 } ( 8 - 4 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{8}\times 2+\frac{3}{16}\left(8-4\right)
Tangohia te 2 i te 4, ka 2.
\frac{3\times 2}{8}+\frac{3}{16}\left(8-4\right)
Tuhia te \frac{3}{8}\times 2 hei hautanga kotahi.
\frac{6}{8}+\frac{3}{16}\left(8-4\right)
Whakareatia te 3 ki te 2, ka 6.
\frac{3}{4}+\frac{3}{16}\left(8-4\right)
Whakahekea te hautanga \frac{6}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3}{4}+\frac{3}{16}\times 4
Tangohia te 4 i te 8, ka 4.
\frac{3}{4}+\frac{3\times 4}{16}
Tuhia te \frac{3}{16}\times 4 hei hautanga kotahi.
\frac{3}{4}+\frac{12}{16}
Whakareatia te 3 ki te 4, ka 12.
\frac{3}{4}+\frac{3}{4}
Whakahekea te hautanga \frac{12}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{3+3}{4}
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{3}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6}{4}
Tāpirihia te 3 ki te 3, ka 6.
\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}