Whakaoti mō x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{7}x+\frac{3}{7}\times 3+5=3x+2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{7} ki te x+3.
\frac{3}{7}x+\frac{3\times 3}{7}+5=3x+2
Tuhia te \frac{3}{7}\times 3 hei hautanga kotahi.
\frac{3}{7}x+\frac{9}{7}+5=3x+2
Whakareatia te 3 ki te 3, ka 9.
\frac{3}{7}x+\frac{9}{7}+\frac{35}{7}=3x+2
Me tahuri te 5 ki te hautau \frac{35}{7}.
\frac{3}{7}x+\frac{9+35}{7}=3x+2
Tā te mea he rite te tauraro o \frac{9}{7} me \frac{35}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{7}x+\frac{44}{7}=3x+2
Tāpirihia te 9 ki te 35, ka 44.
\frac{3}{7}x+\frac{44}{7}-3x=2
Tangohia te 3x mai i ngā taha e rua.
-\frac{18}{7}x+\frac{44}{7}=2
Pahekotia te \frac{3}{7}x me -3x, ka -\frac{18}{7}x.
-\frac{18}{7}x=2-\frac{44}{7}
Tangohia te \frac{44}{7} mai i ngā taha e rua.
-\frac{18}{7}x=\frac{14}{7}-\frac{44}{7}
Me tahuri te 2 ki te hautau \frac{14}{7}.
-\frac{18}{7}x=\frac{14-44}{7}
Tā te mea he rite te tauraro o \frac{14}{7} me \frac{44}{7}, me tango rāua mā te tango i ō raua taurunga.
-\frac{18}{7}x=-\frac{30}{7}
Tangohia te 44 i te 14, ka -30.
x=-\frac{30}{7}\left(-\frac{7}{18}\right)
Me whakarea ngā taha e rua ki te -\frac{7}{18}, te tau utu o -\frac{18}{7}.
x=\frac{-30\left(-7\right)}{7\times 18}
Me whakarea te -\frac{30}{7} ki te -\frac{7}{18} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{210}{126}
Mahia ngā whakarea i roto i te hautanga \frac{-30\left(-7\right)}{7\times 18}.
x=\frac{5}{3}
Whakahekea te hautanga \frac{210}{126} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 42.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}