Whakaoti mō x
x = -\frac{31}{18} = -1\frac{13}{18} \approx -1.722222222
Graph
Pātaitai
Linear Equation
\frac { 3 } { 7 } = \frac { 3 } { 2 } - \frac { 1 } { 3 } + \frac { 3 } { 7 } x
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{7}=\frac{9}{6}-\frac{2}{6}+\frac{3}{7}x
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{3}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{3}{7}=\frac{9-2}{6}+\frac{3}{7}x
Tā te mea he rite te tauraro o \frac{9}{6} me \frac{2}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{7}=\frac{7}{6}+\frac{3}{7}x
Tangohia te 2 i te 9, ka 7.
\frac{7}{6}+\frac{3}{7}x=\frac{3}{7}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{3}{7}x=\frac{3}{7}-\frac{7}{6}
Tangohia te \frac{7}{6} mai i ngā taha e rua.
\frac{3}{7}x=\frac{18}{42}-\frac{49}{42}
Ko te maha noa iti rawa atu o 7 me 6 ko 42. Me tahuri \frac{3}{7} me \frac{7}{6} ki te hautau me te tautūnga 42.
\frac{3}{7}x=\frac{18-49}{42}
Tā te mea he rite te tauraro o \frac{18}{42} me \frac{49}{42}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{7}x=-\frac{31}{42}
Tangohia te 49 i te 18, ka -31.
x=-\frac{31}{42}\times \frac{7}{3}
Me whakarea ngā taha e rua ki te \frac{7}{3}, te tau utu o \frac{3}{7}.
x=\frac{-31\times 7}{42\times 3}
Me whakarea te -\frac{31}{42} ki te \frac{7}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-217}{126}
Mahia ngā whakarea i roto i te hautanga \frac{-31\times 7}{42\times 3}.
x=-\frac{31}{18}
Whakahekea te hautanga \frac{-217}{126} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}