Manatoko
teka
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 3 } { 7 } = \frac { 21 } { 98 } = \frac { 21 } { 105 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{7}=\frac{3}{14}\text{ and }\frac{21}{98}=\frac{21}{105}
Whakahekea te hautanga \frac{21}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{6}{14}=\frac{3}{14}\text{ and }\frac{21}{98}=\frac{21}{105}
Ko te maha noa iti rawa atu o 7 me 14 ko 14. Me tahuri \frac{3}{7} me \frac{3}{14} ki te hautau me te tautūnga 14.
\text{false}\text{ and }\frac{21}{98}=\frac{21}{105}
Whakatauritea te \frac{6}{14} me te \frac{3}{14}.
\text{false}\text{ and }\frac{3}{14}=\frac{21}{105}
Whakahekea te hautanga \frac{21}{98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\text{false}\text{ and }\frac{3}{14}=\frac{1}{5}
Whakahekea te hautanga \frac{21}{105} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 21.
\text{false}\text{ and }\frac{15}{70}=\frac{14}{70}
Ko te maha noa iti rawa atu o 14 me 5 ko 70. Me tahuri \frac{3}{14} me \frac{1}{5} ki te hautau me te tautūnga 70.
\text{false}\text{ and }\text{false}
Whakatauritea te \frac{15}{70} me te \frac{14}{70}.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}