Whakaoti mō n
n=4
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 3 } { 7 } = \frac { ( 10 - n ) } { ( 10 + n ) }
Tohaina
Kua tāruatia ki te papatopenga
3\left(n+10\right)=7\left(10-n\right)
Tē taea kia ōrite te tāupe n ki -10 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7\left(n+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o 7,10+n.
3n+30=7\left(10-n\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te n+10.
3n+30=70-7n
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 10-n.
3n+30+7n=70
Me tāpiri te 7n ki ngā taha e rua.
10n+30=70
Pahekotia te 3n me 7n, ka 10n.
10n=70-30
Tangohia te 30 mai i ngā taha e rua.
10n=40
Tangohia te 30 i te 70, ka 40.
n=\frac{40}{10}
Whakawehea ngā taha e rua ki te 10.
n=4
Whakawehea te 40 ki te 10, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}