Whakaoti mō x
x = \frac{27}{17} = 1\frac{10}{17} \approx 1.588235294
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\times 3+20x\left(-\frac{1}{4}\right)-10\times 3=20x\times \frac{3}{5}-5\times 9
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 20x, arā, te tauraro pātahi he tino iti rawa te kitea o 5x,4,2x,5,4x.
12+20x\left(-\frac{1}{4}\right)-30=20x\times \frac{3}{5}-5\times 9
Mahia ngā whakarea.
12-5x-30=20x\times \frac{3}{5}-5\times 9
Whakareatia te 20 ki te -\frac{1}{4}, ka -5.
-18-5x=20x\times \frac{3}{5}-5\times 9
Tangohia te 30 i te 12, ka -18.
-18-5x=12x-5\times 9
Whakareatia te 20 ki te \frac{3}{5}, ka 12.
-18-5x=12x-45
Whakareatia te -5 ki te 9, ka -45.
-18-5x-12x=-45
Tangohia te 12x mai i ngā taha e rua.
-18-17x=-45
Pahekotia te -5x me -12x, ka -17x.
-17x=-45+18
Me tāpiri te 18 ki ngā taha e rua.
-17x=-27
Tāpirihia te -45 ki te 18, ka -27.
x=\frac{-27}{-17}
Whakawehea ngā taha e rua ki te -17.
x=\frac{27}{17}
Ka taea te hautanga \frac{-27}{-17} te whakamāmā ki te \frac{27}{17} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}