Whakaoti mō y
y = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{5}y=\frac{7}{10}+2
Me tāpiri te 2 ki ngā taha e rua.
\frac{3}{5}y=\frac{7}{10}+\frac{20}{10}
Me tahuri te 2 ki te hautau \frac{20}{10}.
\frac{3}{5}y=\frac{7+20}{10}
Tā te mea he rite te tauraro o \frac{7}{10} me \frac{20}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{5}y=\frac{27}{10}
Tāpirihia te 7 ki te 20, ka 27.
y=\frac{27}{10}\times \frac{5}{3}
Me whakarea ngā taha e rua ki te \frac{5}{3}, te tau utu o \frac{3}{5}.
y=\frac{27\times 5}{10\times 3}
Me whakarea te \frac{27}{10} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
y=\frac{135}{30}
Mahia ngā whakarea i roto i te hautanga \frac{27\times 5}{10\times 3}.
y=\frac{9}{2}
Whakahekea te hautanga \frac{135}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}