Whakaoti mō x
x=\frac{28y}{3}-\frac{3}{2}
Whakaoti mō y
y=\frac{3x}{28}+\frac{9}{56}
Graph
Tohaina
Kua tāruatia ki te papatopenga
36x-105\left(\frac{x}{5}+\frac{1}{2}\right)=140y-75
Me whakarea ngā taha e rua o te whārite ki te 60, arā, te tauraro pātahi he tino iti rawa te kitea o 5,4,2,3.
36x-105\left(\frac{2x}{10}+\frac{5}{10}\right)=140y-75
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 2 ko 10. Whakareatia \frac{x}{5} ki te \frac{2}{2}. Whakareatia \frac{1}{2} ki te \frac{5}{5}.
36x-105\times \frac{2x+5}{10}=140y-75
Tā te mea he rite te tauraro o \frac{2x}{10} me \frac{5}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
36x-\frac{105\left(2x+5\right)}{10}=140y-75
Tuhia te 105\times \frac{2x+5}{10} hei hautanga kotahi.
36x-\frac{210x+525}{10}=140y-75
Whakamahia te āhuatanga tohatoha hei whakarea te 105 ki te 2x+5.
36x-\left(21x+\frac{105}{2}\right)=140y-75
Whakawehea ia wā o 210x+525 ki te 10, kia riro ko 21x+\frac{105}{2}.
36x-21x-\frac{105}{2}=140y-75
Hei kimi i te tauaro o 21x+\frac{105}{2}, kimihia te tauaro o ia taurangi.
15x-\frac{105}{2}=140y-75
Pahekotia te 36x me -21x, ka 15x.
15x=140y-75+\frac{105}{2}
Me tāpiri te \frac{105}{2} ki ngā taha e rua.
15x=140y-\frac{45}{2}
Tāpirihia te -75 ki te \frac{105}{2}, ka -\frac{45}{2}.
\frac{15x}{15}=\frac{140y-\frac{45}{2}}{15}
Whakawehea ngā taha e rua ki te 15.
x=\frac{140y-\frac{45}{2}}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x=\frac{28y}{3}-\frac{3}{2}
Whakawehe 140y-\frac{45}{2} ki te 15.
36x-105\left(\frac{x}{5}+\frac{1}{2}\right)=140y-75
Me whakarea ngā taha e rua o te whārite ki te 60, arā, te tauraro pātahi he tino iti rawa te kitea o 5,4,2,3.
36x-105\left(\frac{2x}{10}+\frac{5}{10}\right)=140y-75
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 2 ko 10. Whakareatia \frac{x}{5} ki te \frac{2}{2}. Whakareatia \frac{1}{2} ki te \frac{5}{5}.
36x-105\times \frac{2x+5}{10}=140y-75
Tā te mea he rite te tauraro o \frac{2x}{10} me \frac{5}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
36x-\frac{105\left(2x+5\right)}{10}=140y-75
Tuhia te 105\times \frac{2x+5}{10} hei hautanga kotahi.
36x-\frac{210x+525}{10}=140y-75
Whakamahia te āhuatanga tohatoha hei whakarea te 105 ki te 2x+5.
36x-\left(21x+\frac{105}{2}\right)=140y-75
Whakawehea ia wā o 210x+525 ki te 10, kia riro ko 21x+\frac{105}{2}.
36x-21x-\frac{105}{2}=140y-75
Hei kimi i te tauaro o 21x+\frac{105}{2}, kimihia te tauaro o ia taurangi.
15x-\frac{105}{2}=140y-75
Pahekotia te 36x me -21x, ka 15x.
140y-75=15x-\frac{105}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
140y=15x-\frac{105}{2}+75
Me tāpiri te 75 ki ngā taha e rua.
140y=15x+\frac{45}{2}
Tāpirihia te -\frac{105}{2} ki te 75, ka \frac{45}{2}.
\frac{140y}{140}=\frac{15x+\frac{45}{2}}{140}
Whakawehea ngā taha e rua ki te 140.
y=\frac{15x+\frac{45}{2}}{140}
Mā te whakawehe ki te 140 ka wetekia te whakareanga ki te 140.
y=\frac{3x}{28}+\frac{9}{56}
Whakawehe 15x+\frac{45}{2} ki te 140.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}