Aromātai
\frac{49}{40}=1.225
Tauwehe
\frac{7 ^ {2}}{2 ^ {3} \cdot 5} = 1\frac{9}{40} = 1.225
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{5}-3\left(-\frac{1}{3}+\frac{3}{3}-\left(\frac{1}{4}-\frac{1}{8}\right)-\frac{3}{4}\right)
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{3}{5}-3\left(\frac{-1+3}{3}-\left(\frac{1}{4}-\frac{1}{8}\right)-\frac{3}{4}\right)
Tā te mea he rite te tauraro o -\frac{1}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{5}-3\left(\frac{2}{3}-\left(\frac{1}{4}-\frac{1}{8}\right)-\frac{3}{4}\right)
Tāpirihia te -1 ki te 3, ka 2.
\frac{3}{5}-3\left(\frac{2}{3}-\left(\frac{2}{8}-\frac{1}{8}\right)-\frac{3}{4}\right)
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{1}{4} me \frac{1}{8} ki te hautau me te tautūnga 8.
\frac{3}{5}-3\left(\frac{2}{3}-\frac{2-1}{8}-\frac{3}{4}\right)
Tā te mea he rite te tauraro o \frac{2}{8} me \frac{1}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{5}-3\left(\frac{2}{3}-\frac{1}{8}-\frac{3}{4}\right)
Tangohia te 1 i te 2, ka 1.
\frac{3}{5}-3\left(\frac{16}{24}-\frac{3}{24}-\frac{3}{4}\right)
Ko te maha noa iti rawa atu o 3 me 8 ko 24. Me tahuri \frac{2}{3} me \frac{1}{8} ki te hautau me te tautūnga 24.
\frac{3}{5}-3\left(\frac{16-3}{24}-\frac{3}{4}\right)
Tā te mea he rite te tauraro o \frac{16}{24} me \frac{3}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{5}-3\left(\frac{13}{24}-\frac{3}{4}\right)
Tangohia te 3 i te 16, ka 13.
\frac{3}{5}-3\left(\frac{13}{24}-\frac{18}{24}\right)
Ko te maha noa iti rawa atu o 24 me 4 ko 24. Me tahuri \frac{13}{24} me \frac{3}{4} ki te hautau me te tautūnga 24.
\frac{3}{5}-3\times \frac{13-18}{24}
Tā te mea he rite te tauraro o \frac{13}{24} me \frac{18}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{5}-3\left(-\frac{5}{24}\right)
Tangohia te 18 i te 13, ka -5.
\frac{3}{5}+\frac{-3\left(-5\right)}{24}
Tuhia te -3\left(-\frac{5}{24}\right) hei hautanga kotahi.
\frac{3}{5}+\frac{15}{24}
Whakareatia te -3 ki te -5, ka 15.
\frac{3}{5}+\frac{5}{8}
Whakahekea te hautanga \frac{15}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{24}{40}+\frac{25}{40}
Ko te maha noa iti rawa atu o 5 me 8 ko 40. Me tahuri \frac{3}{5} me \frac{5}{8} ki te hautau me te tautūnga 40.
\frac{24+25}{40}
Tā te mea he rite te tauraro o \frac{24}{40} me \frac{25}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{49}{40}
Tāpirihia te 24 ki te 25, ka 49.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}