Aromātai
-\frac{149}{210}\approx -0.70952381
Tauwehe
-\frac{149}{210} = -0.7095238095238096
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{5}+\frac{25}{7}\left(-\frac{1}{4}\right)-\frac{5}{12}
Whakahekea te hautanga \frac{3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{3}{5}+\frac{25\left(-1\right)}{7\times 4}-\frac{5}{12}
Me whakarea te \frac{25}{7} ki te -\frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{5}+\frac{-25}{28}-\frac{5}{12}
Mahia ngā whakarea i roto i te hautanga \frac{25\left(-1\right)}{7\times 4}.
\frac{3}{5}-\frac{25}{28}-\frac{5}{12}
Ka taea te hautanga \frac{-25}{28} te tuhi anō ko -\frac{25}{28} mā te tango i te tohu tōraro.
\frac{84}{140}-\frac{125}{140}-\frac{5}{12}
Ko te maha noa iti rawa atu o 5 me 28 ko 140. Me tahuri \frac{3}{5} me \frac{25}{28} ki te hautau me te tautūnga 140.
\frac{84-125}{140}-\frac{5}{12}
Tā te mea he rite te tauraro o \frac{84}{140} me \frac{125}{140}, me tango rāua mā te tango i ō raua taurunga.
-\frac{41}{140}-\frac{5}{12}
Tangohia te 125 i te 84, ka -41.
-\frac{123}{420}-\frac{175}{420}
Ko te maha noa iti rawa atu o 140 me 12 ko 420. Me tahuri -\frac{41}{140} me \frac{5}{12} ki te hautau me te tautūnga 420.
\frac{-123-175}{420}
Tā te mea he rite te tauraro o -\frac{123}{420} me \frac{175}{420}, me tango rāua mā te tango i ō raua taurunga.
\frac{-298}{420}
Tangohia te 175 i te -123, ka -298.
-\frac{149}{210}
Whakahekea te hautanga \frac{-298}{420} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}