Aromātai
-\frac{8}{15}\approx -0.533333333
Tauwehe
-\frac{8}{15} = -0.5333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{5}+\frac{1\times 6}{3\times 5}-\left(\frac{1}{5}+\frac{4}{3}\right)
Me whakarea te \frac{1}{3} ki te \frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{5}+\frac{6}{15}-\left(\frac{1}{5}+\frac{4}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{1\times 6}{3\times 5}.
\frac{3}{5}+\frac{2}{5}-\left(\frac{1}{5}+\frac{4}{3}\right)
Whakahekea te hautanga \frac{6}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{3+2}{5}-\left(\frac{1}{5}+\frac{4}{3}\right)
Tā te mea he rite te tauraro o \frac{3}{5} me \frac{2}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{5}-\left(\frac{1}{5}+\frac{4}{3}\right)
Tāpirihia te 3 ki te 2, ka 5.
1-\left(\frac{1}{5}+\frac{4}{3}\right)
Whakawehea te 5 ki te 5, kia riro ko 1.
1-\left(\frac{3}{15}+\frac{20}{15}\right)
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{1}{5} me \frac{4}{3} ki te hautau me te tautūnga 15.
1-\frac{3+20}{15}
Tā te mea he rite te tauraro o \frac{3}{15} me \frac{20}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1-\frac{23}{15}
Tāpirihia te 3 ki te 20, ka 23.
\frac{15}{15}-\frac{23}{15}
Me tahuri te 1 ki te hautau \frac{15}{15}.
\frac{15-23}{15}
Tā te mea he rite te tauraro o \frac{15}{15} me \frac{23}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{8}{15}
Tangohia te 23 i te 15, ka -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}