Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}-\frac{1}{2\times 2}+\frac{15}{8}\left(-\frac{4}{5}\right)-\frac{1}{-\frac{2}{3}}
Tuhia te \frac{\frac{1}{2}}{2} hei hautanga kotahi.
\frac{3}{4}-\frac{1}{4}+\frac{15}{8}\left(-\frac{4}{5}\right)-\frac{1}{-\frac{2}{3}}
Whakareatia te 2 ki te 2, ka 4.
\frac{3-1}{4}+\frac{15}{8}\left(-\frac{4}{5}\right)-\frac{1}{-\frac{2}{3}}
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{4}+\frac{15}{8}\left(-\frac{4}{5}\right)-\frac{1}{-\frac{2}{3}}
Tangohia te 1 i te 3, ka 2.
\frac{1}{2}+\frac{15}{8}\left(-\frac{4}{5}\right)-\frac{1}{-\frac{2}{3}}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{2}+\frac{15\left(-4\right)}{8\times 5}-\frac{1}{-\frac{2}{3}}
Me whakarea te \frac{15}{8} ki te -\frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}+\frac{-60}{40}-\frac{1}{-\frac{2}{3}}
Mahia ngā whakarea i roto i te hautanga \frac{15\left(-4\right)}{8\times 5}.
\frac{1}{2}-\frac{3}{2}-\frac{1}{-\frac{2}{3}}
Whakahekea te hautanga \frac{-60}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{1-3}{2}-\frac{1}{-\frac{2}{3}}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{3}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{-2}{2}-\frac{1}{-\frac{2}{3}}
Tangohia te 3 i te 1, ka -2.
-1-\frac{1}{-\frac{2}{3}}
Whakawehea te -2 ki te 2, kia riro ko -1.
-1-1\left(-\frac{3}{2}\right)
Whakawehe 1 ki te -\frac{2}{3} mā te whakarea 1 ki te tau huripoki o -\frac{2}{3}.
-1-\left(-\frac{3}{2}\right)
Whakareatia te 1 ki te -\frac{3}{2}, ka -\frac{3}{2}.
-1+\frac{3}{2}
Ko te tauaro o -\frac{3}{2} ko \frac{3}{2}.
-\frac{2}{2}+\frac{3}{2}
Me tahuri te -1 ki te hautau -\frac{2}{2}.
\frac{-2+3}{2}
Tā te mea he rite te tauraro o -\frac{2}{2} me \frac{3}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}
Tāpirihia te -2 ki te 3, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}