Whakaoti mō y
y = \frac{20}{9} = 2\frac{2}{9} \approx 2.222222222
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}y+\frac{3}{4}\times 7+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te y+7.
\frac{3}{4}y+\frac{3\times 7}{4}+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
Tuhia te \frac{3}{4}\times 7 hei hautanga kotahi.
\frac{3}{4}y+\frac{21}{4}+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
Whakareatia te 3 ki te 7, ka 21.
\frac{3}{4}y+\frac{21}{4}+\frac{1}{2}\times 3y+\frac{1}{2}\left(-5\right)=\frac{9}{4}\left(2y-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3y-5.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y+\frac{1}{2}\left(-5\right)=\frac{9}{4}\left(2y-1\right)
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y+\frac{-5}{2}=\frac{9}{4}\left(2y-1\right)
Whakareatia te \frac{1}{2} ki te -5, ka \frac{-5}{2}.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y-\frac{5}{2}=\frac{9}{4}\left(2y-1\right)
Ka taea te hautanga \frac{-5}{2} te tuhi anō ko -\frac{5}{2} mā te tango i te tohu tōraro.
\frac{9}{4}y+\frac{21}{4}-\frac{5}{2}=\frac{9}{4}\left(2y-1\right)
Pahekotia te \frac{3}{4}y me \frac{3}{2}y, ka \frac{9}{4}y.
\frac{9}{4}y+\frac{21}{4}-\frac{10}{4}=\frac{9}{4}\left(2y-1\right)
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{21}{4} me \frac{5}{2} ki te hautau me te tautūnga 4.
\frac{9}{4}y+\frac{21-10}{4}=\frac{9}{4}\left(2y-1\right)
Tā te mea he rite te tauraro o \frac{21}{4} me \frac{10}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{4}\left(2y-1\right)
Tangohia te 10 i te 21, ka 11.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{4}\times 2y+\frac{9}{4}\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{9}{4} ki te 2y-1.
\frac{9}{4}y+\frac{11}{4}=\frac{9\times 2}{4}y+\frac{9}{4}\left(-1\right)
Tuhia te \frac{9}{4}\times 2 hei hautanga kotahi.
\frac{9}{4}y+\frac{11}{4}=\frac{18}{4}y+\frac{9}{4}\left(-1\right)
Whakareatia te 9 ki te 2, ka 18.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{2}y+\frac{9}{4}\left(-1\right)
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{2}y-\frac{9}{4}
Whakareatia te \frac{9}{4} ki te -1, ka -\frac{9}{4}.
\frac{9}{4}y+\frac{11}{4}-\frac{9}{2}y=-\frac{9}{4}
Tangohia te \frac{9}{2}y mai i ngā taha e rua.
-\frac{9}{4}y+\frac{11}{4}=-\frac{9}{4}
Pahekotia te \frac{9}{4}y me -\frac{9}{2}y, ka -\frac{9}{4}y.
-\frac{9}{4}y=-\frac{9}{4}-\frac{11}{4}
Tangohia te \frac{11}{4} mai i ngā taha e rua.
-\frac{9}{4}y=\frac{-9-11}{4}
Tā te mea he rite te tauraro o -\frac{9}{4} me \frac{11}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{9}{4}y=\frac{-20}{4}
Tangohia te 11 i te -9, ka -20.
-\frac{9}{4}y=-5
Whakawehea te -20 ki te 4, kia riro ko -5.
y=-5\left(-\frac{4}{9}\right)
Me whakarea ngā taha e rua ki te -\frac{4}{9}, te tau utu o -\frac{9}{4}.
y=\frac{-5\left(-4\right)}{9}
Tuhia te -5\left(-\frac{4}{9}\right) hei hautanga kotahi.
y=\frac{20}{9}
Whakareatia te -5 ki te -4, ka 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}