Aromātai
\frac{19}{3}\approx 6.333333333
Tauwehe
\frac{19}{3} = 6\frac{1}{3} = 6.333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}\times \frac{196}{9}-3\times \frac{14}{3}+4
Tātaihia te \frac{14}{3} mā te pū o 2, kia riro ko \frac{196}{9}.
\frac{3\times 196}{4\times 9}-3\times \frac{14}{3}+4
Me whakarea te \frac{3}{4} ki te \frac{196}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{588}{36}-3\times \frac{14}{3}+4
Mahia ngā whakarea i roto i te hautanga \frac{3\times 196}{4\times 9}.
\frac{49}{3}-3\times \frac{14}{3}+4
Whakahekea te hautanga \frac{588}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{49}{3}-14+4
Me whakakore te 3 me te 3.
\frac{49}{3}-\frac{42}{3}+4
Me tahuri te 14 ki te hautau \frac{42}{3}.
\frac{49-42}{3}+4
Tā te mea he rite te tauraro o \frac{49}{3} me \frac{42}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{3}+4
Tangohia te 42 i te 49, ka 7.
\frac{7}{3}+\frac{12}{3}
Me tahuri te 4 ki te hautau \frac{12}{3}.
\frac{7+12}{3}
Tā te mea he rite te tauraro o \frac{7}{3} me \frac{12}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{19}{3}
Tāpirihia te 7 ki te 12, ka 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}