Whakaoti mō u
u=7
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}u+\frac{3}{4}\left(-3\right)=\frac{1}{3}\left(2u-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te u-3.
\frac{3}{4}u+\frac{3\left(-3\right)}{4}=\frac{1}{3}\left(2u-5\right)
Tuhia te \frac{3}{4}\left(-3\right) hei hautanga kotahi.
\frac{3}{4}u+\frac{-9}{4}=\frac{1}{3}\left(2u-5\right)
Whakareatia te 3 ki te -3, ka -9.
\frac{3}{4}u-\frac{9}{4}=\frac{1}{3}\left(2u-5\right)
Ka taea te hautanga \frac{-9}{4} te tuhi anō ko -\frac{9}{4} mā te tango i te tohu tōraro.
\frac{3}{4}u-\frac{9}{4}=\frac{1}{3}\times 2u+\frac{1}{3}\left(-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te 2u-5.
\frac{3}{4}u-\frac{9}{4}=\frac{2}{3}u+\frac{1}{3}\left(-5\right)
Whakareatia te \frac{1}{3} ki te 2, ka \frac{2}{3}.
\frac{3}{4}u-\frac{9}{4}=\frac{2}{3}u+\frac{-5}{3}
Whakareatia te \frac{1}{3} ki te -5, ka \frac{-5}{3}.
\frac{3}{4}u-\frac{9}{4}=\frac{2}{3}u-\frac{5}{3}
Ka taea te hautanga \frac{-5}{3} te tuhi anō ko -\frac{5}{3} mā te tango i te tohu tōraro.
\frac{3}{4}u-\frac{9}{4}-\frac{2}{3}u=-\frac{5}{3}
Tangohia te \frac{2}{3}u mai i ngā taha e rua.
\frac{1}{12}u-\frac{9}{4}=-\frac{5}{3}
Pahekotia te \frac{3}{4}u me -\frac{2}{3}u, ka \frac{1}{12}u.
\frac{1}{12}u=-\frac{5}{3}+\frac{9}{4}
Me tāpiri te \frac{9}{4} ki ngā taha e rua.
\frac{1}{12}u=-\frac{20}{12}+\frac{27}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri -\frac{5}{3} me \frac{9}{4} ki te hautau me te tautūnga 12.
\frac{1}{12}u=\frac{-20+27}{12}
Tā te mea he rite te tauraro o -\frac{20}{12} me \frac{27}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{12}u=\frac{7}{12}
Tāpirihia te -20 ki te 27, ka 7.
u=\frac{7}{12}\times 12
Me whakarea ngā taha e rua ki te 12, te tau utu o \frac{1}{12}.
u=7
Me whakakore te 12 me te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}